Recall

Concave up:

f increases at f decreases at f changes at an In all cases: increasing rate increasing rate increasing rate

f concave up
$\Leftrightarrow f^{\prime}$ increasing
$\Leftrightarrow f^{\prime \prime}>0$

Concave down:
f increases at decreasing rate

f changes at a In all cases: decreasing rate decreasing rate

f concave down
$\Leftrightarrow f^{\prime}$ decreasing
$\Leftrightarrow f^{\prime \prime}<0$

Also recall:

Thus f can only change concavity where $f^{\prime \prime}(c)=0$ or where $f^{\prime \prime}(c)$ does not exist.

In Class Work

1. Determine the intervals where the graph of $f(x)=x^{2}+\frac{1}{x}$ is concave up and concave down, and find all inflection points.

Solutions

1. Determine the intervals where the graph $f(x)=x^{2}+\frac{1}{x}$ is concave up and concave down, and find all inflection points.
$f(x)$ is defined for all x except for $x=0$.
f is concave up $\Leftrightarrow f^{\prime \prime}>0 \quad f$ is concave down $\Leftrightarrow f^{\prime \prime}<0$

$$
f^{\prime}(x)=2 x-x^{-2} \quad \Rightarrow \quad f^{\prime \prime}(x)=2+2 x^{-3}=2+\frac{2}{x^{3}} .
$$

- $f^{\prime \prime}$ is undefined at $x=0$ (which isn't in the domain of f)
- $f^{\prime \prime}(x)=0 \Leftrightarrow 2+\frac{2}{x^{3}}=0 \Leftrightarrow \frac{2}{x^{3}}=-2 \Leftrightarrow x^{3}=-1 \Leftrightarrow x=-1$.

Thus f could change concavity at $x=-1$ and/or at $x=0$. Note: since f isn't defined at $x=0$, a change of concavity would not mean an inflection point there.

Solutions (continued)

1. $f^{\prime \prime}(x)=2+\frac{2}{x^{3}} \quad f^{\prime \prime}(x)=0$ at $x=-1 \quad f^{\prime \prime}(x)$ d.n.e. at $x=0$.
$f^{\prime \prime}(-2)=2+\frac{2}{(-2)^{3}}>0, f^{\prime \prime}\left(-\frac{1}{2}\right)=2+\frac{2}{\left(-\frac{1}{2}\right)^{3}}<0, f^{\prime \prime}(1)=2+\frac{2}{(1)^{3}}>0$

That is, f is concave up on $(-\infty,-1) \cup(0, \infty)$, and f is concave down on $(-1,0)$.

Although f changes concavity at both $x=-1$ and at $x=0$, only $x=0$ is an inflection point, because f is not defined at $x_{i}=0$.

Solutions (continued)

1. Found: f is conc. up on $(-\infty,-1) \cup(0, \infty)$, \& f is conc. down on $(-1,0)$.

Although f changes concavity at both $x=-1$ and at $x=0$, only $x=0$ is an inflection point, because f is not defined at $x=0$.

In Class Work

2. Find all critical numbers and use the Second Derivative Test to determine all local extrema:
(a) $f(x)=x e^{-x}$
(b) $f(x)=\frac{x^{2}-5 x+4}{x}$
3. Suppose $g(3)=1, g^{\prime}(3)=2$, and $g^{\prime \prime}(3)=-2$. Does $g(x)$ have a local maximum at $x=3$?
4. Let f be the function shown below:

Rank the values of $f^{\prime \prime}(-3), f^{\prime \prime}(1)$, and $f^{\prime \prime}(3)$ in increasing order.

Solutions:

2. Find all critical numbers and use the Second Derivative Test to determine all local extrema:
(a) $f(x)=x e^{-x}$

- Note: $f(x)=x e^{-x}=\frac{x}{e^{x}}$ is defined for all x.
- Critical Numbers:

$$
f^{\prime}(x)=-x e^{-x}+e^{-x}=\frac{1}{e^{x}}(-x+1)=\frac{1}{e^{x}}(1-x)
$$

Thus the only critical number is $x=1$

- Local Extrema:

$$
f^{\prime \prime}(x)=e^{-x}(-1)-e^{-x}(1-x)=e^{-x}(-1-1+x)=e^{-x}(x-2)
$$

$$
f^{\prime \prime}(1)=\frac{1-2}{e^{1}}<0, \text { so } f \text { is concave down at } x=1
$$

Since f is flat and concave down at $x=1, f$ has a local maximum at $x=1$.

Solutions:

2. Find all critical numbers, use the 2nd Deriv Test
(b) $f(x)=\frac{x^{2}-5 x+4}{x}$

- Note: $f(x)=\frac{x^{2}-5 x+4}{x}$ is undefined at $x=0$.
- Critical Numbers:

$$
f^{\prime}(x)=\frac{x(2 x-5)-\left(x^{2}-5 x+4\right)(1)}{x^{2}}=\frac{x^{2}-4}{x^{2}}=\frac{(x-2)(x+2)}{x^{2}}
$$

Only critical numbers are $x= \pm 2 ; x=0$ is not a critical number b / c f isn't defined there (but f could still change direction there).

- Local Extrema:

$$
\begin{gathered}
f^{\prime \prime}(x)=\frac{x^{2}(2 x)-\left(x^{2}-4\right)(2 x)}{x^{4}}=\frac{8 x}{x^{4}}=\frac{8}{x^{3}} \\
f^{\prime \prime}(-2)=\frac{8}{(-2)^{3}}<0 \Rightarrow f \text { is conc down } \Rightarrow \text { local max at } x=-2 \\
f^{\prime \prime}(2)=\frac{8}{(2)}>0 \Rightarrow \underset{\text { In-Class Work }}{f} \text { is conc up } \Rightarrow \text { docalamin at } x \equiv=2 \text { October 28, 2011 }
\end{gathered}
$$

Solutions:

3. Suppose $g(3)=1, g^{\prime}(3)=2$, and $g^{\prime \prime}(3)=-2$. Does $g(x)$ have a local maximum at $x=3$?

Just because $g^{\prime \prime}(3)<0$ and thus g is concave down at $x=2$, this alone does not say whether g has a local maximum at $x=3$. We would also need for g^{\prime} to be 0 or to not exist at $x=3$.

Since $g^{\prime}(3)=2, x=3$ is not a critical number of g, and so g does not have a local maximum (or a local minimum) at $x=3$

Solutions:

4. Let f be the function shown below:

Rank the values of $f^{\prime \prime}(-3), f^{\prime \prime}(1)$, and $f^{\prime \prime}(3)$ in increasing order.

- f is concave down at $x=-3$ and hence $f^{\prime \prime}(-3)<0$.
- f has an inflection point at $x=1$ and hence $f^{\prime \prime}(1)=0$
- f is concave up at $x=3$ and hence $f^{\prime \prime}(3)>0$.

Thus $f^{\prime \prime}(-3)<f^{\prime \prime}(0)<f^{\prime \prime}(3)$

