Problems with Graphing Technology

Consider this graph:

 ◆□▶ ◆□▶ ◆□▶ ◆□▶ □
 ◆○○○

 October 31, 2011
 1 / 22

Problems with Graphing Technology

Zooming in to a domain one quarter as large,

Problems with Graphing Technology

And zooming in to an even smaller domain,

Things to investigate When Graphing a Function

- ▶ **Critical Numbers:** Find the critical numbers of *f*
- ▶ Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is \uparrow or \downarrow
- ▶ Local Extrema: Conclude where there are local mins and max's
- **Potential inflection points:** Find critical numbers of f'
- ▶ Concavity: On intervals to each side of points where f''(x) = 0 or d.n.e., find whether f is \smile or \frown . If the concavity changes at a point where f exists, f has an infl pt there: if f' d.n.e, it's an infl pt w/ a vert tangent, if f'(x) = 0, then it's an infl pt w/ a hor tangent.

Things to investigate When Graphing a Function

- ▶ **Domain** are there any points or intervals *not* in the domain of *f*?
- ▶ **Vertical asymptotes** If *a* is an isolated point not in the domain (not an interval), is there a vertical asymptote at *a*, or is it a removable discontinuity? Find $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$
- ▶ **Critical Numbers:** Find the critical numbers of *f*
- ▶ Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is \uparrow or \downarrow
- ▶ Local Extrema: Conclude where there are local mins and max's
- **Potential inflection points:** Find critical numbers of f'
- ▶ **Concavity**: On intervals to each side of points where f''(x) = 0 or d.n.e., find whether f is \smile or \frown . If the concavity changes at a point where f exists, f has an infl pt there: if f' d.n.e, it's an infl pt w/ a vert tangent, if f'(x) = 0, then it's an infl pt w/ a hor tangent. continued...

More things to investigate

- ▶ Horizontal Asymptotes: Check the limit of f(x) as $x \to \pm \infty$. If either limit is finite, you have a horizontal asymptote on that side. Polynomials and roots do not have horizontal asymptotes. A function is most likely to have a horizontal asymptote if it involves an exponential function or is a quotient of two functions.
- ▶ A few key points: Find the y-values of all the points you've identified as important. Find the y-intercept, and if it's not too painful, find the x-intercepts as well.

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

1. Find the domain of f(x)

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

1. Find the domain of f(x)

$$f(x) = \frac{2(x^2 - 4)}{(x - 1)(x + 1)} = \frac{2(x - 2)(x + 2)}{(x - 1)(x + 1)}$$

The only numbers we're not allowed to plug into f(x) are x = -1 and x = 1.

Domain: All $x \neq \pm 1$.

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

2. **Vertical asymptotes** - If a is an isolated point not in the domain (not an interval), is there a vertical asymptote at a, or is it a removable discontinuity? Find $\lim_{x \to a^+} f(x)$ and $\lim_{x \to a^-} f(x)$

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

- 3. **Critical Numbers:** Find the critical numbers of *f*
- 4. **Increasing/Decreasing:** On each interval determined by the critical numbers *and* the points not in the domain of f, find if f is \uparrow or \downarrow
- 5. Local Extrema: Conclude where there are local mins and max's
- 6. **Potential inflection points:** Find critical numbers of f'
- 7. **Concavity**: On intervals to each side of points where f''(x) = 0 or d.n.e., find whether f is \smile or \frown . If the concavity changes at a point where f exists, f has an infl pt there: if f' d.n.e, it's an infl pt w/ a vert tangent, if f'(x) = 0, then it's an infl pt w/ a hor tangent.

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

3. **Critical Numbers:** Find the critical numbers of *f*

$$f'(x) = \frac{(x^2 - 1)(4x) - (2x^2 - 8)(2x)}{(x^2 - 1)^2}$$
$$= \frac{4x^3 - 4x - 4x^3 + 16x}{(x^2 - 1)^2}$$
$$= \frac{12x}{(x^2 - 1)^2}$$

Thus f'(x) dne at ± 1 (but neither does f), and f'(x) = 0 where 12x = 0, i.e. where x = 0.

The function may change direction at any of these three points, but x = 0 is the only critical number (because f is not defined at the other two points)

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

- 4. **Increasing/Decreasing:** On each interval determined by the critical numbers *and* the points not in the domain of f, find if f is \uparrow or \downarrow
- 5. Local Extrema: Conclude where there are local mins and max's
- 6. **Potential inflection points:** Find critical numbers of f'
- 7. **Concavity**: On intervals to each side of points where f''(x) = 0 or d.n.e., find whether f is \smile or \frown . If the concavity changes at a point where f exists, f has an infl pt there: if f' d.n.e, it's an infl pt w/ a vert tangent, if f'(x) = 0, then it's an infl pt w/ a hor tangent.

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

- 4. **Increasing/Decreasing:** On each interval determined by the critical numbers *and* the points not in the domain of f, find if f is \uparrow or \downarrow
- 5. Local Extrema: Conclude where there are local mins and max's

$$f'(x) = \frac{12x}{(x^2 - 1)^2}$$
 Where $f'(x) = 0$ or dne: $x = -1$, $x = 0$, $x = 1$

$$f'(-2) = \frac{-}{+} < 0, \ f'(-\frac{1}{2}) = \frac{-}{+} < 0, \ f'(\frac{1}{2}) = \frac{+}{+} > 0, \ f'(2) = \frac{+}{+} > 0$$

October 31, 2011

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

- **6. Potential inflection points:** Find critical numbers of f'
- 7. **Concavity**: On intervals to each side of points where f''(x) = 0 or d.n.e., find whether f is \smile or \frown . If the concavity changes at a point where f exists, f has an infl pt there: if f' d.n.e, it's an infl pt w/ a vert tangent, if f'(x) = 0, then it's an infl pt w/ a hor tangent.

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

6. Potential inflection pts: Find where f''(x) = 0 or dne (but f' does).

$$f''(x) = \frac{12x}{(x^2 - 1)^2}$$

$$f''(x) = \frac{(x^2 - 1)^2 \cdot 12 - 12x(2)(x^2 - 1)(2x)}{(x^2 - 1)^2}$$

$$= \frac{(x^2 - 1)\left(12(x^2 - 1) - 48x^2\right)}{(x^2 - 1)^4}$$

$$= \frac{12x^2 - 12 - 48x^2}{(x^2 - 1)^3} = \frac{-12(3x^2 + 1)}{(x^2 - 1)^3}$$

f''(x) dne at $x = \pm 1$ (same as f & f').

 $f''(x) = 0 \iff$ numerator= 0, which it doesn't, so f has no infl pts.

However, concavity *could* change at the asymptotes.

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

7. **Concavity**: On intervals to each side of points where f''(x) = 0 or d.n.e., find whether f is \sim or \sim . If the concavity changes at a point where f exists, f has an infl pt there: if f' d.n.e, it's an infl pt w/ a vert tangent, if f'(x) = 0, then it's an infl pt w/ a hor tangent.

Graphing
$$f(x) = \frac{2x^2 - 8}{x^2 - 1}$$

- 8. Horizontal Asymptotes: Check the limit of f(x) as x → ±∞. If either limit is finite, you have a horizontal asymptote on that side. Polynomials and roots do not have horizontal asymptotes.
 A function is most likely to have a horizontal asymptote if it involves an exponential function or is a quotient of two functions.
- 9. **A few key points:** Find the *y*-values of all the points you've identified as important. Find the *y*-intercept, and if it's not too painful, find the *x*-intercepts as well.

In Class Work

1. Sketch the graph of $f(x) = x \ln(x)$, labeling and discussing all significant features.

- 1. Sketch the graph of $f(x) = x \ln(x)$, labeling and discussing all significant features.
 - **Domain:** f(x) is undefined for all $x \le 0$
 - **Vertical asymptotes:** ln(x) has a vertical asymptote at x = 0. Does this function?

$$\lim_{x \to 0^+} x \ln(x) \stackrel{0 \cdot -\infty}{=} \lim_{x \to 0^+} \frac{\ln(x)}{1/x} \stackrel{-\infty/\infty}{=} \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} -x = 0.$$

Thus f does **not** have a vertical asymptote, but instead approaches the point (0,0).

- Domain is all x > 0; $\lim_{x \to 0^+} f = 0$
- **▶** Critical Numbers:

$$f'(x) = x\left(\frac{1}{x}\right) + \ln(x)(1) = 1 + \ln(x)$$

f'(x) is undefined for all $x \le 0$, as is f.

$$f'(x) = 0$$
 when $\ln(x) = -1$, or when $x = e^{-1} = \frac{1}{e}$.

Thus the only critical number is $x = \frac{1}{e}$.

► Increasing/Decreasing:

$$f'(1/4) = \ln(1/4) + 1 < 0$$
 $f'(1) = \ln(1) + 1 > 0$

► Local Extrema:

f has a local minimum at $x = \frac{1}{6}$

- ▶ $f \downarrow$ on $\left(0, \frac{1}{e}\right)$, \uparrow on $\left(\frac{1}{e}, \infty\right)$; f has a local min at $x = \frac{1}{e}$
- ► Potential Inflection Points:

$$f''(x) = \frac{1}{x}.$$

f''(x) d.n.e. at x = 0, (but x = 0 isn't in domain) $f''(x) \neq 0$.

Thus f has no inflection points.

Concavity:

No inflection points $\Rightarrow f$ is \smile or \frown everywhere.

Find sign of f'' at one point in domain to know concavity everywhere.

$$f''(1) = \frac{1}{1} > 0 \Rightarrow f$$
 concave up on entire domain

- ▶ $f \downarrow$ on $\left(0, \frac{1}{e}\right)$, \uparrow on $\left(\frac{1}{e}, \infty\right)$; f has a local min at $x = \frac{1}{e}$
- ▶ f is concave up on $(0, \infty)$
- ► Horizontal asymptotes?

$$\lim_{x\to\infty} x \ln(x) = \infty \cdot \infty = \infty.$$

Thus f has no horizontal asymptotes

- Domain is all x > 0; $\lim_{x \to 0^+} f = 0$
- ▶ $f \downarrow$ on $(0, \frac{1}{2})$, \uparrow on $(\frac{1}{2}, \infty)$; f has a local min at $x = \frac{1}{2}$
- ightharpoonup f is concave up on $(0,\infty)$
- ► A few key points:

Only significant points we've found so far:

• our local minimum at x = 1/e:

$$f(1/e) = \frac{1}{e} \ln \left(\frac{1}{e} \right) = \frac{1}{e} \ln(e^{-1}) = -\frac{1}{e}$$

- y-intercept? x = 0 is not in the domain. But we do know that f approaches y=0 as $x\to 0^+$.
- ▶ x-intercept? Where is $x \ln(x) = 0$? Since $x \neq 0$, only possibility is where ln(x) = 0, which is at x = 1.

▶ Domain is all x > 0; $\lim_{x \to 0} f = 0$

►
$$f \downarrow$$
 on $\left(0, \frac{1}{e}\right)$, \uparrow on $\left(\frac{1}{e}, \infty\right)$;
 f has a local min at $x = \frac{1}{e}$

- f is concave up on $(0, \infty)$
- $\lim_{Y \to \infty} f = \infty$
- f(1/e) = -1/e, f(1) = 0

