Problems with Graphing Technology

Consider this graph:

[^0]
Problems with Graphing Technology

Zooming in to a domain one quarter as large,

Problems with Graphing Technology

And zooming in to an even smaller domain,

Things to investigate When Graphing a Function

- Critical Numbers: Find the critical numbers of f
- Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is \uparrow or \downarrow
- Local Extrema: Conclude where there are local mins and max's
- Potential inflection points: Find critical numbers of f^{\prime}
- Concavity: On intervals to each side of points where $f^{\prime \prime}(x)=0$ or d.n.e., find whether f is \smile or \frown. If the concavity changes at a point where f exists, f has an infl pt there: if f^{\prime} d.n.e, it's an infl pt $w /$ a vert tangent, if $f^{\prime}(x)=0$, then it's an infl pt w/ a hor tangent. continued...

Things to investigate When Graphing a Function

- Domain - are there any points or intervals not in the domain of f ?
- Vertical asymptotes - If a is an isolated point not in the domain (not an interval), is there a vertical asymptote at a, or is it a removable discontinuity? Find $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$
- Critical Numbers: Find the critical numbers of f
- Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is \uparrow or \downarrow
- Local Extrema: Conclude where there are local mins and max's
- Potential inflection points: Find critical numbers of f^{\prime}
- Concavity: On intervals to each side of points where $f^{\prime \prime}(x)=0$ or d.n.e., find whether f is \smile or \frown. If the concavity changes at a point where f exists, f has an infl pt there: if f^{\prime} d.n.e, it's an infl pt w/a vert tangent, if $f^{\prime}(x)=0$, then it's an infl pt $\mathrm{w} /$ a hor tangent. continued...

More things to investigate

- Horizontal Asymptotes: Check the limit of $f(x)$ as $x \rightarrow \pm \infty$. If either limit is finite, you have a horizontal asymptote on that side. Polynomials and roots do not have horizontal asymptotes.
A function is most likely to have a horizontal asymptote if it involves an exponential function or is a quotient of two functions.
- A few key points: Find the y-values of all the points you've identified as important. Find the y-intercept, and if it's not too painful, find the x-intercepts as well.

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$

1. Find the domain of $f(x)$

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$

1. Find the domain of $f(x)$

$$
f(x)=\frac{2\left(x^{2}-4\right)}{(x-1)(x+1)}=\frac{2(x-2)(x+2)}{(x-1)(x+1)}
$$

The only numbers we're not allowed to plug into $f(x)$ are $x=-1$ and $x=1$.

Domain: All $x \neq \pm 1$.

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$

2. Vertical asymptotes - If a is an isolated point not in the domain (not an interval), is there a vertical asymptote at a, or is it a removable discontinuity? Find $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$
3. Critical Numbers: Find the critical numbers of f
4. Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is \uparrow or \downarrow
5. Local Extrema: Conclude where there are local mins and max's
6. Potential inflection points: Find critical numbers of f^{\prime}
7. Concavity: On intervals to each side of points where $f^{\prime \prime}(x)=0$ or d.n.e., find whether f is \smile or \frown. If the concavity changes at a point where f exists, f has an infl pt there: if f^{\prime} d.n.e, it's an infl pt w / a vert tangent, if $f^{\prime}(x)=0$, then it's an infl pt $\mathrm{w} /$ a hor tangent.

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$

3. Critical Numbers: Find the critical numbers of f

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}-1\right)(4 x)-\left(2 x^{2}-8\right)(2 x)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{4 x^{3}-4 x-4 x^{3}+16 x}{\left(x^{2}-1\right)^{2}} \\
& =\frac{12 x}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

Thus $f^{\prime}(x)$ dne at ± 1 (but neither does f), and $f^{\prime}(x)=0$ where $12 x=0$, i.e. where $x=0$.

The function may change direction at any of these three points, but $x=0$ is the only critical number (because f is not defined at the other two points)

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$
4. Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is \uparrow or \downarrow
5. Local Extrema: Conclude where there are local mins and max's
6. Potential inflection points: Find critical numbers of f^{\prime}
7. Concavity: On intervals to each side of points where $f^{\prime \prime}(x)=0$ or d.n.e., find whether f is \smile or \frown. If the concavity changes at a point where f exists, f has an infl pt there: if f^{\prime} d.n.e, it's an infl pt w/a vert tangent, if $f^{\prime}(x)=0$, then it's an infl pt $\mathrm{w} /$ a hor tangent.

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$

4. Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is \uparrow or \downarrow
5. Local Extrema: Conclude where there are local ming and max's

$$
\begin{aligned}
& f^{\prime}(x)=\frac{12 x}{\left(x^{2}-1\right)^{2}} \\
& \text { Where } f^{\prime}(x)=0 \text { or one: } x=-1, x=0, x=1 \\
& f^{\prime}(-2)=\frac{-}{+}<0, f^{\prime}\left(-\frac{1}{2}\right)=\frac{-}{+}<0, f^{\prime}\left(\frac{1}{2}\right)=\frac{+}{+}>0, f^{\prime}(2)=\frac{+}{+}>0 \\
& \text { + } \\
& \text { Local min } \\
& \text { f' ------und----------0+++++++und+++ }
\end{aligned}
$$

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$

6. Potential inflection points: Find critical numbers of f^{\prime}
7. Concavity: On intervals to each side of points where $f^{\prime \prime}(x)=0$ or d.n.e., find whether f is \smile or \frown. If the concavity changes at a point where f exists, f has an infl pt there: if f^{\prime} d.n.e, it's an infl pt $w /$ a vert tangent, if $f^{\prime}(x)=0$, then it's an infl pt $\mathrm{w} /$ a hor tangent.

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$

6. Potential inflection pts: Find where $f^{\prime \prime}(x)=0$ or dne (but f^{\prime} does).

$$
\begin{aligned}
& f^{\prime}(x)=\frac{12 x}{\left(x^{2}-1\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{\left(x^{2}-1\right)^{2} \cdot 12-12 x(2)\left(x^{2}-1\right)(2 x)}{\left(x^{2}-1\right)^{2}} \\
&=\frac{\left(x^{2}-1\right)\left(12\left(x^{2}-1\right)-48 x^{2}\right)}{\left(x^{2}-1\right)^{4}} \\
&=\frac{12 x^{2}-12-48 x^{2}}{\left(x^{2}-1\right)^{3}}=\frac{-12\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}
\end{aligned}
$$

$f^{\prime \prime}(x)$ dne at $x= \pm 1$ (same as $f \& f^{\prime}$).
$f^{\prime \prime}(x)=0 \Longleftrightarrow$ numerator $=0$, which it doesn't, so f has no infl pts.
However, concavity could change at the asymptotes.

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$

7. Concavity: On intervals to each side of points where $f^{\prime \prime}(x)=0$ or d.n.e., find whether f is \smile or \frown. If the concavity changes at a point where f exists, f has an infl pt there: if f^{\prime} d.n.e, it's an infl pt w/a vert tangent, if $f^{\prime}(x)=0$, then it's an infl pt $\mathrm{w} /$ a hor tangent. $f^{\prime \prime}(x)=\frac{-12\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}$

$$
f^{\prime \prime}(-2)=\frac{-}{+}<0 f^{\prime \prime}(0)=\frac{-}{-}>0 f^{\prime \prime}(2)=\frac{-}{+}<0
$$

Graphing $f(x)=\frac{2 x^{2}-8}{x^{2}-1}$

8. Horizontal Asymptotes: Check the limit of $f(x)$ as $x \rightarrow \pm \infty$. If either limit is finite, you have a horizontal asymptote on that side. Polynomials and roots do not have horizontal asymptotes. A function is most likely to have a horizontal asymptote if it involves an exponential function or is a quotient of two functions.
9. A few key points: Find the y-values of all the points you've identified as important. Find the y-intercept, and if it's not too painful, find the x-intercepts as well.

In Class Work

1. Sketch the graph of $f(x)=x \ln (x)$, labeling and discussing all significant features.

Solutions:

1. Sketch the graph of $f(x)=x \ln (x)$, labeling and discussing all significant features.

- Domain: $f(x)$ is undefined for all $x \leq 0$
- Vertical asymptotes: $\ln (x)$ has a vertical asymptote at $x=0$. Does this function?

$$
\lim _{x \rightarrow 0^{+}} x \ln (x) \stackrel{0 .-\infty}{=} \lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x} \stackrel{-\infty / \infty}{=} \lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}}-x=0
$$

Thus f does not have a vertical asymptote, but instead approaches the point $(0,0)$.

Solutions:

- Domain is all $x>0 ; \lim _{x \rightarrow 0^{+}} f=0$
- Critical Numbers:

$$
f^{\prime}(x)=x\left(\frac{1}{x}\right)+\ln (x)(1)=1+\ln (x)
$$

$f^{\prime}(x)$ is undefined for all $x \leq 0$, as is f.
$f^{\prime}(x)=0$ when $\ln (x)=-1$, or when $x=e^{-1}=\frac{1}{e}$.
Thus the only critical number is $x=\frac{1}{e}$.

- Increasing/Decreasing:

$$
f^{\prime}(1 / 4)=\ln (1 / 4)+1<0 \quad f^{\prime}(1)=\ln (1)+1>0
$$

- Local Extrema:
f has a local minimum at $x=\frac{1}{e}$

Solutions:

- Domain is all $x>0 ; \lim _{x \rightarrow 0^{+}} f=0$
- $f \downarrow$ on $\left(0, \frac{1}{e}\right), \uparrow$ on $\left(\frac{1}{e}, \infty\right) ; f$ has a local min at $x=\frac{1}{e}$
- Potential Inflection Points:

$$
f^{\prime \prime}(x)=\frac{1}{x}
$$

$f^{\prime \prime}(x)$ d.n.e. at $x=0$, (but $x=0$ isn't in domain)
$f^{\prime \prime}(x) \neq 0$.
Thus f has no inflection points.

- Concavity:

No inflection points $\Rightarrow f$ is \smile or \frown everywhere.
Find sign of $f^{\prime \prime}$ at one point in domain to know concavity everywhere.

$$
f^{\prime \prime}(1)=\frac{1}{1}>0 \Rightarrow f \text { concave up on entire domain }
$$

Solutions:

- Domain is all $x>0 ; \lim _{x \rightarrow 0^{+}} f=0$
- $f \downarrow$ on $\left(0, \frac{1}{e}\right), \uparrow$ on $\left(\frac{1}{e}, \infty\right) ; f$ has a local min at $x=\frac{1}{e}$
- f is concave up on $(0, \infty)$
- Horizontal asymptotes?

$$
\lim _{x \rightarrow \infty} x \ln (x)=\infty \cdot \infty=\infty
$$

Thus f has no horizontal asymptotes

Solutions:

- Domain is all $x>0 ; \lim _{x \rightarrow 0^{+}} f=0$
- $f \downarrow$ on $\left(0, \frac{1}{e}\right), \uparrow$ on $\left(\frac{1}{e}, \infty\right) ; f$ has a local min at $x=\frac{1}{e}$
- f is concave up on $(0, \infty)$
- $\lim _{x \rightarrow \infty} f=\infty$
- A few key points:

Only significant points we've found so far:

- our local minimum at $x=1$ /e:

$$
f(1 / e)=\frac{1}{e} \ln \left(\frac{1}{e}\right)=\frac{1}{e} \ln \left(e^{-1}\right)=-\frac{1}{e}
$$

- y-intercept? $x=0$ is not in the domain. But we do know that f approaches $y=0$ as $x \rightarrow 0^{+}$.
- x-intercept? Where is $x \ln (x)=0$? Since $x \neq 0$, only possibility is where $\ln (x)=0$, which is at $x=1$.

Solutions:

- Domain is all $x>0$;

$$
\lim _{x \rightarrow 0^{+}} f=0
$$

- $f \downarrow$ on $\left(0, \frac{1}{e}\right), \uparrow$ on $\left(\frac{1}{e}, \infty\right)$;
f has a local min at $x=\frac{1}{e}$
- f is concave up on $(0, \infty)$
- $\lim _{x \rightarrow \infty} f=\infty$
- $f(1 / e)=-1 / e, f(1)=0$

[^0]: October 31, 2011

