- 1. Let $f(x) = \ln(x)$, $g(x) = x^2 + 3x$, and $h(x) = \cos(x)$. Find the following derivatives.
 - (a) $(f \circ g)'(x)$

We know from the chain rule that

$$(f \circ g)'(x) = \frac{d}{dx} f(g(x)))$$

= $f'(g(x))g'(x)$
= $\frac{1}{g(x)} \cdot (2x+3)$
= $\frac{1}{x^2+3x} \cdot (2x+3)$

7

(b) $(g \circ f)'(x)$

From the chain rule, we have

$$(g \circ f)'(x) = \frac{d}{dx}(g(f(x)))$$

= $g'(f(x))f'(x)$
= $(2u+3) \cdot (\frac{1}{x})$, where $u = f(x)$
= $(2\ln(x)+3) \cdot (\frac{1}{x})$

(c) $(h \circ g)'(x)$

The chain rule tells us

$$(h \circ g)'(x) = \frac{d}{dx}(h(g(x))) = h'(g(x))g'(x) = \sin(g(x))(2x+3) = \sin(x^2+3x)(2x+3)$$

2. Find the derivatives of the following functions.

(a)
$$(3x^2+2)^{14}$$

We can write this as f(u(x)), with $u(x) = 3x^2 + 2$ and $f(u) = u^{14}$. Therefore, the chain rule tells us that

$$\frac{d}{dx}(3x^2+2)^{14} = f'(u)u'(x)$$

= $14u^{13} \cdot (6x)$
= $14(3x^2+2)^{13}(6x)$

(b) $\ln(\sin x)$

We can write this as f(u(x)), with $u(x) = \sin(x)$ and $f(u) = \ln(u)$. Therefore, the chain rule tells us that

$$\frac{d}{dx}(\ln(\sin(x))) = f'(u)u'(x)$$
$$= \frac{1}{u} \cdot \cos(x)$$
$$= \frac{1}{\sin(x)}\cos(x)$$
$$= \cot(x)$$

(c) $(\sin(3x^2))^2$

We can write this as f(u(x)) with $u(x) = \sin(3x^2)$ and $f(u) = u^2$. Therefore, the chain rule tells us that

$$\frac{d}{dx}((\sin(3x^2))^2) = f'(u)u'(x)$$

= $2u \cdot u'(x)$ but $u(x)$ is itself a composition.

I can write $u(x) = \sin(3x^2)$ as g(v(x)) with $v(x) = 3x^2$ and $g(v) = \sin(v)$. The chain rule tells us that

$$\frac{d}{dx}((\sin(3x^2))^2) = 2u \cdot g'(v)v'(x) = 2\sin(3x^2) \cdot \cos(v) \cdot 6x = 2\sin(3x^2) \cdot \cos(3x^2) \cdot 6x$$

(d) $x^2 \sin(x^3)$

If I read this out loud, it's " x^2 times $\sin(x^3)$." I've got two different pieces that I'm multiplying, so I have to use the product rule.

Thus I have:

$$\frac{d}{dx}(x^2\sin(x^3)) = \frac{d}{dx}(x^2)\cdot\sin(x^3) + x^2\cdot\frac{d}{dx}(\sin(x^3))$$
$$= 2x\sin(x^3) + x^2\frac{d}{dx}(\sin(x^3)) - \text{I'm going to have to use the chain rule}$$
$$= 2x\sin(x^3) + x^2(\cos(x^3)\cdot 3x^2)$$

(e) $\sqrt{\ln(x^2+2x)}$

I can write this as f(u(x)), with $u(x) = \ln(x^2 + 2x)$ and $f(u) = \sqrt{u} = u^{1/2}$. Therefore the chain rule tells us that

$$\frac{d}{dx}(\sqrt{\ln(x^2+2x)}) = f'(u)u'(x)$$

= $\frac{1}{2}u^{-1/2} \cdot \frac{d}{dx}(\ln(x^2+2x)) -$ I'm going to have to use the chain r
= $\frac{1}{2}(\ln(x^2+2x))^{-1/2} \cdot \frac{1}{x^2+2x} \cdot (2x+2)$