- 1. Let $f(x) = \sin(x)$ and let $P_k(x)$ be the kth order Taylor polynomial for f(x) at $x_0 = 0$.
 - (a) Find $P_1(x)$, $P_2(x)$, $P_3(x)$, $P_4(x)$ and $P_5(x)$.
 - (b) Verify your answers by graphing the polynomials and f(x) on the same set of axes.
 - (c) Use $P_5(x)$ to find an approximation for $\sin(3)$. Will this be larger or smaller than the actual value of $\sin(3)$?
 - (d) Now find $P_{20}(x)$.

 Hint: You don't actually need to take all of the derivatives notice patterns!.
- 2. Let $f(x) = \ln(x)$. Find $P_4(x)$, the 4th order Taylor polynomial for f(x) based at $x_0 = 1$. Verify your answer by graphing f(x) and $P_4(x)$ on the same set of axes. Then use $P_4(x)$ to find an approximation for $\ln(1.5)$. Compare this to the approximation of $\ln(2)$ given by Maple.

April 8, 2005 Sklensky

- 1. Let $f(x) = 14\sin(3x) + 2x^2 4x^3$.
 - (a) Use the IVT to show that f(x) has a root between x = -2 and x = 2.
 - (b) Use the IVT to show that f(x) has a stationary point between x = -1 and x = 0.
- 2. Let $f(x) = \frac{1}{x-2}$.
 - (a) Use the IVT to show that f(x) has a root between x = 1 and x = 3.
 - (b) Find the exact value of the root by solving f(x) = 0. What goes wrong?
 - (c) Reconcile your answers to parts (a) and (b).