Basic Building Block Functions:

Addition of Functions

If $h(x) = \cos(x)$ and $j(x) = x^2$, then $(h+j)(x) = h(x) + j(x) = \cos(x) + x^2$

Subtraction of Functions

If
$$h(x) = \cos(x)$$
 and $j(x) = x^2$, then $(h-j)(x) = h(x) - j(x) = \cos(x) - x^2$

Math 101-Calculus 1 (Sklensky)

In-Class Work

January 23, 2015

Multiplication of Functions

If $h(x) = \cos(x)$ and $j(x) = x^2$, then $(hj)(x) = h(x)j(x) = x^2\cos(x)$

4 / 22

Division of Functions

If
$$h(x) = \cos(x)$$
 and $j(x) = x^2$, then $\frac{h}{j}(x) = \frac{h(x)}{j(x)} = \frac{\cos(x)}{x^2}$

Question:

Let
$$f(x) = x^2 + 5x$$
 and $g(x) = \tan(x)$.
(We'll review $\tan(x)$ in a few days.)

- 1. Find $f \circ g(x)$
- 2. Find $g \circ f(x)$

Question and Answer:

Let
$$f(x) = x^2 + 5x$$
 and $g(x) = \tan(x)$.

(a) Find $f \circ g(x)$

Definition: $f \circ g(x) = f(g(x))$

$$f \circ g(x) = f(\tan(x)) = (\tan(x))^2 + 5\tan(x)$$

(b) Find $g \circ f(x)$

$$g \circ f(x) = g(x^2 + 5x) = \tan(x^2 + 5x)$$

Question:

- 1. Let $g(x) = 2x^3$. How is the graph of h(x) = g(x) 5 related to the graph of g(x), and why?
- 2. Let $f(x) = \cos(x)$. How is the graph of $g(x) = f(x + \pi/2)$ related to the graph of f(x), and why? (We'll review $\cos(x)$ in a few days.)

8 / 22

Answer: Vertical Translation

1. If $g(x) = 2x^3$ and k = -5, then the graph of $h(x) = g(x) + k = 2x^3 - 5$ is shifted up vertically by k units. In this case, k is negative, so the graph is shifted down 5 units.

Answer: Horizontal Translation

2. If $f(x) = \cos(x)$ and $k = \pi/2$, then the graph of $g(x) = \cos(x + \pi/2)$ is shifted left horizontally by k units.

More Questions!

- Let f(x) = 3^x. How is the graph of g(x) = 2f(x) related to the graph of f(x)?
 (We'll review exponential functions in a few days.)
- 2. Let $f(x) = \sin(x)$. How is the graph of g(x) = f(2x) related to the graph of f(x)?

Answer: Vertical Stretching

1. If $f(x) = 3^x$ and k = 2, then the graph of $g(x) = 2 \cdot 3^x$ (which is not the same as 6^{x}) is stretched vertically by a factor of 2: every height g(a) is twice the height f(a).

Answer: Horizontal Compression

2. If $f(x) = \sin(x)$ and k = 2, then the graph of $g(x) = \sin(2x)$ is compressed horizontally by a factor of 2: If the point (x, y) lies on the graph of f, the the point (x/2, y) lies on the graph of g.

X	sin(x)	sin(2x)
0	sin(0)	sin(0)
$\pi/4$	$sin(\pi/4)$	$sin(\pi/2)$
$\pi/2$	$sin(\pi/2)$	$sin(\pi)$
$3\pi/4$	$\sin(3\pi/4)$	$\sin(3\pi/2)$
π	$sin(\pi)$	$sin(2\pi)$

- 1. Given $f(x) = 2^x$, $g(x) = \cos(x)$, and $h(x) = x^3 2x$, find:
 - (a) $f \circ g(x)$ (b) $f \circ h(x)$
 - (c) $h \circ g(x)$ (d) $f \circ g \circ h(x)$
- 2. The functions below define f(x) and g(x). Find $f \circ g(-3)$.

- 3. Let $f(x) = x^2$. In each case, sketch all listed functions on the same set of axes.
 - (a) f(x), f(x) + 2, and f(x) 3
 - (b) f(x), f(x+2), and f(x-3)
 - (c) f(x), 2f(x), -3f(x), and $\frac{1}{2}f(x)$

Solutions to In Class Work

1. Given $f(x) = 2^x$, $g(x) = \cos(x)$, and $h(x) = x^3 - 2x$, find: (a) $f \circ g(x)$

$$f \circ g(x) = f(g(x)) = f(\cos(x)) = 2^{\cos(x)}.$$

(b) $f \circ h(x)$

$$f \circ h(x) = f(h(x)) = f(x^3 - 2x) = 2^{x^3 - 2x}.$$

(c) $h \circ g(x)$

$$h \circ g(x) = h(g(x)) = h(\cos(x)) = (\cos(x))^3 - 2\cos(x).$$

(d) $f \circ g \circ h(x)$

$$f \circ g \circ h(x) = f\left(g(h(x))\right) = f\left(g(x^3 - 2x)\right) = f\left(\cos(x^3 - 2x)\right)$$
$$= 2^{\cos(x^3 - 2x)}.$$

2. The functions below define f(x) and g(x). Find $f \circ g(-3)$.

- $f \circ g(-3) = f(g(-3)).$
- From the graph of g(x), g(-3) = 3.
- ► Thus $f \circ g(-3) = f(g(-3)) = f(3)$
- From the graph of f(x), f(3) = 2.
- ▶ Thus $f \circ g(-3) = 2$.

3. Let $f(x) = x^2$. In each case, sketch all listed functions on the same set of axes.

In-Class Work

(a)
$$f(x)$$
, $f(x) + 2$, and $f(x) - 3$

17 / 22

Math 101-Calculus 1 (Sklensky)

3. Let $f(x) = x^2$. In each case, sketch all listed functions on the same set of axes.

(b) f(x), f(x+2), and f(x-3)

3. Let $f(x) = x^2$. In each case, sketch all listed functions on the same set of axes.

set of axes.
(c)
$$f(x)$$
, $2f(x)$, $-3f(x)$, and $\frac{1}{2}f(x)$

January 23, 2015

Math 101-Calculus 1 (Sklensky)

In Class Practice

- 1. Find the compositions $f \circ g(x)$ and $g \circ f(x)$ if $f(x) = x^2 + x$ and $g(x) = \sin(x)$.
- 2. Identify functions f(x) and g(x) such that $\sqrt{(x-2)^4+3}$ is $f\circ g(x)$.
- 3. Use the graph below to sketch the graph of 3f(x) + 5

Solutions:

- 3. Find the compositions $f \circ g(x)$ and $g \circ f(x)$ if $f(x) = x^2 + x$ and $g(x) = \sin(x)$.
 - (a) $f \circ g(x) = f(g(x)) = f(\sin(x)) = \sin^2(x) + \sin(x)$
 - (b) $g \circ f(x) = g(f(x)) = g(x^2 + x) = \sin(x^2 + x)$
- 4. Identify functions f(x) and g(x) such that $\sqrt{(x-2)^4+3}$ is $f\circ g(x)$.
 - One possibility: g(x) = x 2, $f(x) = \sqrt{x^4 + 3}$
 - Another possibility: $g(x) = (x-2)^4$, $f(x) = \sqrt{x+3}$
 - Yet another possibility: $g(x) = (x-2)^4 + 3$, $f(x) = \sqrt{x}$.

Solutions:

5. Use the graph below to sketch the graph of 3f(x) + 5

