DWW Problem 3 (really, #2)

Find the derivative of

$$y = \left(\frac{x^2 + 2}{3}\right)^5 = \left(\frac{x^2 + 5}{3}\right)^5.$$

► Easiest way:

Recognize that the division by 3 is just multiplication by a constant, that is, by 1/3, and so we don't have to use the quotient rule, but can just use the constant multiple rule.

Outer function:
$$g(u) = u^5 \Rightarrow g'(u) = 5u^4$$

Inner function:
$$h(x) = \frac{1}{3}(x^2 + 5) \Rightarrow h'(x) = \frac{1}{3}(2x) = \frac{2x}{3}$$

$$y = g(h(x))$$

$$\frac{dy}{dx} = g'(h(x))h'(x) = 5\left(\frac{x^2+5}{3}\right)^4\left(\frac{2x}{3}\right)$$

DWW Problem 3 (really, #2)

Find the derivative of

$$y = \left(\frac{x^2 + 2}{3}\right)^5 = \left(\frac{x^2 + 5}{3}\right)^5.$$

Harder way:

If you don't recognize that you don't have to use the quotient rule on the inner function.

Outer function:
$$g(u) = u^5 \Rightarrow g'(u) = 5u^4$$

Inner function: $h(x) = \frac{x^2 + 5}{3} \Rightarrow h'(x) = \frac{3 \cdot 2x - (x^2 + 5) \cdot 0}{3^2} = \frac{2x}{3}$

$$y = g(h(x))$$

$$\frac{dy}{dx} = g'(h(x))h'(x) = 5\left(\frac{x^2 + 5}{3}\right)^4 \left(\frac{2x}{3}\right)$$

DWW Problem 5 (really, #4)

Suppose that
$$y = \frac{7}{7x - 4}$$
. Find $\frac{dy}{dx}$.

▶ Use the quotient rule on $y = \frac{7}{7x - 4}$.

$$\frac{dy}{dx} = \frac{\text{hi d' ho - ho d' hi}}{\text{ho ho}} = \frac{(7x - 4) \cdot 0 - 7 \cdot 7}{(7x - 4)^2} = -\frac{49}{(7x - 4)^2}$$

OR

• Use the chain rule on $y = 7(7x - 4)^{-1}$.

$$\frac{dy}{dx} = g'(h(x)) = 7(-1)(7x - 4))^{-2}(7) = -\frac{49}{(7x - 4)^2}$$

Types of Functions We Can't Yet Differentiate

•
$$f(x) = (x^6 - 14x^5 + 27x^{-3} - 13)(101x^{-1} + 14x^6 + 13 - 42\sqrt{x})$$
 \checkmark

$$g(x) = \frac{x^7 - \sqrt{x}}{14x^2 + 12}$$

$$h(x) = \left(x^2 + 1\right)^{25}$$

$$i(x) = \cos(x^2)$$

$$k(x) = \sin(e^{14x})$$

$$m(x) = \ln(\sqrt{x} - 14)$$

Recall: The graph of b^x passes through the point (0,1) for all b, since b⁰ = 1.

- Recall: The graph of b^x passes through the point (0,1) for all b, since b⁰ = 1.
- ► The larger *b* is, the steeper the slope at (0, 1) is.

- Recall: The graph of b^x passes through the point (0,1) for all b, since b⁰ = 1.
- ► The larger *b* is, the steeper the slope at (0,1) is.
- ▶ If $b \ge 3$, the slope of b^x at (0,1) is larger than 1; if $b \le 2$, the slope of b^x at (0,1) is less than 1.

- ▶ Recall: The graph of b^x passes through the point (0,1) for all b, since b⁰ = 1.
- ► The larger *b* is, the steeper the slope at (0,1) is.
- ▶ If $b \ge 3$, the slope of b^x at (0,1) is larger than 1; if $b \le 2$, the slope of b^x at (0,1) is less than 1.
- ► There is some number b between 2 and 3 for which b[×] has slope 1 at (0,1).

- Recall: The graph of b^x passes through the point (0,1) for all b, since b⁰ = 1.
- ▶ The larger b is, the steeper the slope at (0,1) is.
- ▶ If $b \ge 3$, the slope of b^x at (0,1) is larger than 1; if $b \le 2$, the slope of b^x at (0,1) is less than 1.
- ► There is some number b between 2 and 3 for which b[×] has slope 1 at (0,1).
- There is some number b btwn 2 and 3 for which line tangent to $y = b^x$ at (0,1) has slope 1.

That is, for what b is y = x + 1 the line tangent to b^x at (0,1)?

That is, for what b is y = x + 1 the line tangent to b^x at (0,1)? Zoom in again!

That is, for what b is y = x + 1 the line tangent to b^x at (0,1)? And zoom in one more time!

Just the right value of *b*:

2.71828182845904523536028747135266249775724709369995957496697....

Is $\frac{d}{dx}(e^x) = xe^{x-1}$?

Compare the graphs of e^x and xe^{x-1} :

 e^{x} is always increasing, so $\frac{d}{dx}(e^{x})$ should be always positive, but xe^{x-1} is negative for all ax < 0.

 xe^{x-1} is **not** the derivative of e^x .

In Class Work

For each function, find its derivative:

1.
$$f(x) = 5e^x - 7x^e - 6\ln(10)$$

2.
$$f(x) = (x^2 + 4)3^x$$

3.
$$f(x) = \sqrt{e^x + x}$$

4.
$$f(x) = e^{\sqrt{x}}$$

5.
$$f(x) = e^{\frac{1}{\sqrt{x}+4}}$$