What we know so far:

Function	Derivative
x ^k	kx^{k-1}
e ^x	e ^x
b^{\times}	$ln(b)b^{x}$
ln(x)	$\frac{1}{x}$
$\log_b(x)$	$\frac{1}{\ln(b)\cdot x}$

Type of	fn	Derivative
(fg)(x))	(fg)'(x) = f'(x)g(x) + f(x)g'(x)
$ \left \frac{f}{g} \right (x) $ $ f(g(x))(x) $		$\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{\left(g(x)\right)^2}$ $f'(g(x))g'(x)$

Types of Functions We Can't Yet Differentiate

•
$$f(x) = (x^6 - 14x^5 + 27x^{-3} - 13)(101x^{-1} + 14x^6 + 13 - 42\sqrt{x})$$
 \checkmark

$$g(x) = \frac{x^7 - \sqrt{x}}{14x^2 + 12}$$

$$h(x) = (x^2 + 1)^{25}$$

$$i(x) = \cos(x^2)$$

$$k(x) = \sin(e^{14x})$$

$$m(x) = \ln(\sqrt{x} - 14)$$

March 5, 2015

Recall Two Trig Limits

Graph of
$$\frac{\sin(h)}{h}$$
 on $[-\pi, \pi]$

$$\lim_{h\to 0}\frac{\sin(h)}{h}=1$$

Crapb of
$$cos(h)-1$$
 on [$cos(h)=1$]

Graph of
$$\frac{\cos(h)-1}{h}$$
 on $[-\pi,\pi]$

$$\lim_{h\to 0}\frac{\cos(h)-1}{h}=0$$

Connection Between These Limits and Slopes

Note that both of these limits are derivatives at x = 0:

$$\frac{d}{dx}(\sin(x))\Big|_{x=0} = \lim_{h \to 0} \frac{\sin(0+h) - \sin(0)}{h} = \lim_{h \to 0} \frac{\sin(h)}{h}$$
$$= \text{Slope of } \sin(x) \text{ at } x = 0$$

$$\frac{d}{dx}(\cos(x))\Big|_{x=0} = \lim_{h \to 0} \frac{\cos(0+h) - \cos(0)}{h} = \lim_{h \to 0} \frac{\cos(h) - 1}{h}$$
$$= \text{Slope of } \cos(x) \text{ at } x = 0$$

Alternative Reason Why $\lim_{h\to 0} \frac{\cos(h)-1}{h} = 0$:

$$\lim_{h\to 0}\frac{\cos(h)-1}{h}=\lim_{h\to 0}\frac{\cos(0+h)-\cos(0)}{h}=\frac{d}{dx}\big(\cos(x)\big)\bigg|_{0}.$$

Since cos(x) clearly has a horizontal tangent line at x = 0, the slope at x = 0 is 0, so we know the derivative of cos(x) at x = 0 is 0, and hence this limit is 0.

Recall - radians

Why We Use Radians

Tangent Line has slope 1

Graph of sin(x) in degrees

Tangent Line does not have slope 1 (It turns out to be $\frac{\pi}{180}$)

Recall:

Trig identity:

$$\sin(x+h) = \sin(x)\cos(h) + \cos(x)\sin(h)$$

8 / 16

Cosine and Sine are horizontal shifts of each other

In Class Work

- 1. Find the derivatives of the following:
 - (a) $f(x) = \tan(x)$ (Remember, $\tan(x) = \frac{\sin(x)}{\cos(x)}$)
 - (b) $g(x) = \csc(x)$ (Remember, $\csc(x) = \frac{1}{\sin(x)}$)
 - (c) $h(x) = \cos(e^x) + \sin(x+3)$
 - (d) $j(x) = \sqrt{x} \sin(5x^2)$
 - (e) $k(x) = \sec(\ln(x)) + 7$
- 2. Find an antiderivative of the following; check your answers by taking the derivative.
 - (a) $f(x) = \cos(x) \sin(x)$
 - (b) $h(x) = 3\sin(4) + 2\sin(3x) + x^{732} + \frac{1}{x}$

1. Find the derivatives of the following:

(a)
$$f(x) = \tan(x)$$
 (Remember, $\tan(x) = \frac{\sin(x)}{\cos(x)}$)

$$f'(x) = \frac{d}{dx} \left(\frac{\sin(x)}{\cos(x)}\right) = \frac{\cos(x)(\cos(x)) - \sin(x)(-\sin(x))}{(\cos(x))^2}$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$
$$= \frac{1}{\cos^2 x} = \left(\frac{1}{\cos(x)}\right)^2$$
$$= \sec^2(x)$$

$$\frac{d}{dx}\big(\tan(x)\big)=\sec^2(x)$$

1. Find the derivatives of the following:

(b)
$$g(x) = \csc(x)$$
 (Remember, $\csc(x) = \frac{1}{\sin(x)}$)

$$g'(x) = ddx \left(\left(\sin(x) \right)^{-1} \right) = -1 \left(\sin(x) \right)^{-2} \left(\cos(x) \right)$$
$$= -\frac{1}{\sin(x)} \frac{\cos(x)}{\sin(x)}$$
$$= -\csc(x) \cot(x)$$

$$\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)$$

1. Find the derivatives of the following:

(c)
$$h(x) = \cos(e^x) + \sin(x+3)$$

Both $cos(e^x)$ and sin(x+3) are compositions, so use the chain rule on each of them:

$$h'(x) = -\sin(e^x)(e^x) + \cos(x+3)(1) = -27\sin(27x) + \cos(x+3).$$

(d)
$$j(x) = \sqrt{x} \sin(5x^2)$$

Product rule, then chain rule when we get to it:

$$j'(x) = \sqrt{x} \frac{d}{dx} \left(\sin(5x^2) \right) + \frac{1}{2} x^{-1/2} \sin(5x^2)$$
$$= \sqrt{x} \left(\cos(5x^2)(10x) \right) + \frac{\sin(5x^2)}{2\sqrt{x}}$$

1. Find the derivatives of the following:

(e)
$$k(x) = \sec(\ln(x)) + 7$$

First part is a composition, with sec(u) being the outer function, ln(x)the inner.

$$k'(x) = \sec(u)\tan(u)\frac{d}{dx}(\ln(x)) = \sec(\ln(x))\tan(\ln(x))\cdot\frac{1}{x}$$

2. Find an antiderivative of the following; check your answers by taking the derivative.

(a)
$$f(x) = cos(x) - sin(x)$$

Since

$$\frac{d}{dx}(\sin(x)) = \cos(x) \qquad \frac{d}{dx}(\cos(x)) = -\sin(x),$$

an antiderivative of cos(x) is sin(x), and an antiderivative of sin(x) is -cos(x).

Therefore, one antiderivative of f(x) is:

$$F(x) = \sin(x) - \left(-\sin(x)\right) = \sin(x) + \cos(x).$$

Check:
$$F'(x) = \frac{d}{dx} \left(\sin(x) + \cos(x) \right) = \cos(x) - \sin(x) = f(x)$$

2. Find an antiderivative of the following; check your answers by taking the derivative.

(b)
$$h(x) = 3\sin(4) + 2\sin(3x) + x^{732} + \frac{1}{x}$$

Piece-by-piece:

- $ightharpoonup 3 \sin(4)$: Just a constant. The antiderivative of a constant k is kx, so we have $3\sin(4)x$.
- ▶ $2\sin(3x)$: Is an antiderivative $-2\cos(3x)$? Not quite -

$$\frac{d}{dx}(-2\cos(3x)) = -(-2\sin(3x)(3)) = 6\sin(3x).$$
 Off by a factor of 3.

Try $-\frac{2}{3}\cos(3x)$ for the antiderivative. Then

$$\frac{d}{dx}(-\frac{2}{3}\cos(3x)) = 2\sin(3x)$$
, as we want.

- ► x^{732} : An antiderivative is $\frac{1}{733}x^{733}$ ► $\frac{1}{x}$: Recall that $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$, so an antiderivative of $\frac{1}{x}$ is $\ln(x)$.

So an antiderivative is

$$H(x) = 3\sin(4)x - \frac{2}{3}\cos(3x) + \frac{1}{733}x^{733} + \ln(x)$$