Recall:

- 1. **Definition:** An **alternating series** is one whose terms alternate in sign. That is, a series of the form $c_1 c_2 + c_3 \cdots$ where c_i is positive.
- 2. Alternating Series Test: Consider the alternating

series
$$c_1 - c_2 + c_3 - \dots = \sum_{k=1}^{\infty} (-1)^{k+1} c_k$$
 where $c_k \ge 0$.

If $\lim_{k\to\infty} c_k = 0$, then the series converges and its limit lies between any two consecutive partial sums.

That is, if the series converges to S, then S lies between S_n and S_{n+1} for any n.

November 21, 2005 Sklensky

Do the following series converge conditionally, converge absolutely, or diverge?

1.
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k^2}{k^2 + 1}$$

$$2. \sum_{k=1}^{\infty} \frac{\cos(k)}{k^4 + 1}$$

November 21, 2005

Sklensky

The following series converge (one absolutely, the other conditionally). In each case, calculate S_{1000} using Maple, and determine how close this approximates the value of the series.

1.
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k^2 + 1}$$

$$2. \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^5}{n^6 + 17}$$

November 21, 2005

Sklensky