- 1. For each series below:
 - (i) Find a_2 and a_3 ; S_2 and S_3 .
 - (ii) Does the series converge or diverge? If it converges, find the value to which it converges.

(a)
$$\sum_{k=0}^{\infty} \frac{4}{3^k}$$
 (b) $\sum_{k=0}^{\infty} \frac{3^k}{(-4)^k}$

2. For each series below, does the series converge or diverge? If it does converge, find the value to which it converges. *Note in each case where the series starts!*

(a)
$$\sum_{k=2}^{\infty} \frac{5^k}{2^k}$$
 (b) $\sum_{k=42}^{\infty} \frac{1}{5^k}$

November 4, 2005

Sklensky

Do the following series converge or diverge?

1.
$$\sum_{k=1}^{\infty} \frac{2k^2 - 3}{5k^2 + 6k}$$

2.
$$\sum_{k=98}^{\infty} \frac{3^k + \sin(k)}{\cos(k) + 5}$$

3.
$$\sum_{k=2}^{\infty} \frac{5^k - 6k - 27}{7^k + 14k^2 + k}$$

November 4, 2005

Sklensky