Taylor's Theorem:

Let f(x) be a function which is repeatedly differentiable on an interval I containing x_0 . Suppose $P_n(x)$ is the n-th order Taylor polynomial based at x_0 . Further suppose K_{n+1} is a bound for $|f^{(n+1)}(x)|$ on I. That is,

$$|f^{(n+1)}(x)| \le K_{n+1}$$
 for all $x \in I$

Then for all $x \in I$,

$$|f(x) - P_n(x)| \le \frac{K_{n+1}}{(n+1)!} |x - x_0|^{n+1}$$

October 17, 2005 Sklensky

Let $f(x) = \cos(x)$ and let $x_0 = \frac{\pi}{2}$.

- 1. Find $P_5(x)$
- 2. Verify your answer by graphing $P_5(x)$ and f(x) on the same set of axes with $-\pi/2 \le x \le 3\pi/2$
- 3. Use $P_5(2)$ to approximate $\cos(2)$
- 4. How accurate is your answer?
- 5. Find a value of n so that $P_n(2)$ approximates $\cos(2)$ accurate within 10^{-10} .

October 17, 2005 Sklensky