Recall: If f(x) has infinitely many derivatives at $x = x_0$, then the Taylor series for f centered (or based) at x_0 is

$$\sum_{k=0}^{\infty}a_k(x-x_0)^k$$
 where $a_k=rac{f^{(k)}(x_0)}{k!}$

Find Taylor Series about $x_0 = 0$ for the following:

1. $f(x) = \sin(x)$ 2. $g(x) = \cos(x)$ Hint: $\frac{d}{dx}\sin(x) = \cos(x)$

Math 104-Calculus 2 (Sklensky)

In-Class Work

December 9, 2009 1 / 4

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

We found that the Taylor series for sin(x) based at $x_0 = 0$ is

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

But we're left with two crucial questions:

- 1. Where does this Taylor series converge?
- 2. Does this Taylor series actually converge to sin(x)?

E Sac

(日)

Previous Version of Taylor's Theorem:

Suppose that f is repeatedly differentiable on an interval I containing x_0 and that

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

is the *n*th order Taylor polynomial based at x_0 . Suppose that for all x in I,

$$\left|f^{(n+1)}(x)\right| \leq K_{n+1}.$$

Then

$$|f(x) - P_n(x)| \le \frac{K_{n+1}}{(n+1)!} |x - x_0|^{n+1}$$

Math 104-Calculus 2 (Sklensky)

In-Class Work

December 9, 2009 3 / 4

Find power series expansions about $x_0 = 0$ for the following:

1.
$$f(x) = \sin(x)$$

2. $g(x) = \cos(x)$
Hint: $\frac{d}{dx}\sin(x) = \cos(x)$
3. $h(x) = \cos(x^2)$
Feel free to use the result from (2).
4. $H(x) = \int \cos(x^2) dx$
Then approximate $\int_0^1 \cos(x^2) dx$ accurate within 10^{-5} .

Math 104-Calculus 2 (Sklensky)

In-Class Work

December 9, 2009 4 / 4

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで