$$1. \sum_{m=1}^{\infty} \frac{1}{m\sqrt{1+m^2}}$$

This is on the supplement to PS 11, so I will not put the full solutions here.

I found that this is a convergent series; one set of upper and lower bounds is

$$\frac{1}{\sqrt{2}} \leq \sum_{m=1}^{\infty} \frac{1}{m\sqrt{1+m^2}} \leq 2,$$

although I could improve the lower bound quite a bit by using a better choice for a partial sum.

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

November 16, 2009 1 / 11

2.
$$\sum_{k=1}^{\infty} \frac{k}{(k^2+1)^2}$$

Again, this is on the supplement to PS 11, so I will not include the full solution.

I found that this is a convergent series whose value lies in the interval

$$\frac{1}{4} \le \sum_{k=1}^{\infty} \frac{k}{(k^2+1)^2} \le \frac{1}{2}.$$

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

November 16, 2009 2 / 11

(日)

3.
$$\sum_{j=1}^{\infty} \frac{1}{100+5j}$$

Is this a series I know? Neither geometric nor p-series, so no.

Notice: it's close to $\sum_{j=1}^{\infty} \frac{1}{5j}$, which diverges. Intuition tells me that given series will also diverge, but need to convince myself and others.

- *j*th term test: The *j*th term test is inconclusive.
- Comparison Test vs Integral Test?

Beware the direction of comparison:

$$\sum_{j=1}^{\infty} \frac{1}{100+5j} \le \frac{1}{5} \sum_{j=1}^{\infty} \frac{1}{j} = \infty.$$

Not useful.

Find a more useful comparison? Integral test?

Can integrate the corresponding integral, and the integral test provides an easy way to deal with the approximation as well \Rightarrow use the integral test.

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

November 16, 2009 3 / 11

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

3.
$$\sum_{j=1}^{\infty} \frac{1}{100+5j} \text{ (continued)}$$

▶ Integral test: Determine the convergence/divergence of the associated integral $\int_{1}^{\infty} \frac{1}{100 + 5x} dx$.

Let
$$u = 100 + 5x$$
, so $\frac{1}{5} du = dx$.
$$\int_{1}^{\infty} \frac{1}{100 + 5x} dx = \frac{1}{5} \int_{105}^{\infty} \frac{1}{u} du$$
, which diverges.

Thus
$$\sum_{j=1}^{\infty} rac{1}{100+5j}$$
 diverges by the Integral Test.

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

November 16, 2009 4 / 11

3.
$$\sum_{j=1}^{\infty} \frac{1}{100+5j}$$
 (continued)

 \blacktriangleright Since the series diverges, find N so $S_N \geq 1000$:

That is, find N so that
$$\sum_{j=1}^{N} \frac{1}{100+5j} \ge 1000$$
.
I don't know any general expression for this partial sum.
Can I switch over to an integral?
In the supplement to PS 10, we are showing that
 $\int_{1}^{n+1} a(x) dx \le \sum_{k=1}^{\infty} a_k$ for continuous, non-negative, decreasing $a(x)$.
Since $a(x) = \frac{1}{100+5x}$ is continuous non-negative and decreasing, I therefore know

$$\sum_{j=1}^{N} \frac{1}{100+5j} \geq \int_{1}^{N+1} \frac{1}{100+5x} \ dx.$$

Thus, if we find N so the integral is larger than 1000, the partial sum will also be.

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

November 16, 2009 5 / 11

- 3. $\sum_{j=1}^{\infty} \frac{1}{100+5j}$ (continued)
 - ► Since the series diverges, find N so S_N ≥ 1000: Using u = 100 + 5x, $\frac{1}{5} du = dx$, $x = 1 \Rightarrow u = 105$, $x = N + 1 \Rightarrow u = 100 + 5(N + 1),$ $\int_{1}^{n+1} \frac{1}{100+5x} dx \ge 1000$ $\frac{1}{5}\int_{100+5(N+1)}^{100+5(N+1)}\frac{1}{u}\,du \geq 1000$ $\ln(100 + 5(N + 1)) - \ln(105) \ge 5000$ $\ln(100 + 5(N + 1)) \geq 5000 + \ln(105)$ $100 + 5(N + 1) > e^{5000 + \ln(105)} = e^{5000}e^{\ln(105)}$ $100 + 5(N + 1) \ge 105e^{5000}$ $N+1 \geq \frac{105e^{5000}-100}{5} = 21e^{5000}-20$ $N > 21e^{5000} - 21 \approx 6.23 \times 10^{2172}$ ・ロト ・ 日 ・ ・ ヨ ・ ・ IN I DOG

Solutions to In-Class Work

$$4. \sum_{k=0}^{\infty} \frac{k}{k^6 + 17}$$

▶ Is this a series I know? Neither geometric nor p-series, so no.

Notice: close to $\sum_{k=1}^{\infty} \frac{1}{k^5}$, which converges. Intuition says this series will converge, but must convince ourselves.

- kth term test: Inconclusive.
- Comparison Test vs Integral Test?

Don't particularly care to integrate $\int_0^\infty \frac{x}{x^6 + 17} dx$, so try the **comparison test**

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

< □ > < @ > < 差 > < 差 > 差 う Q @ November 16, 2009 7 / 11

Comparison Test:

$$k^{6} + 17 \ge k^{6} \Rightarrow \frac{k}{k^{6} + 17} \le \frac{k}{k^{6}} = \frac{1}{k^{5}} \text{ for all } k \ge 1$$

Be careful! $\frac{k}{k^{6} + 17}$ is defined for $k = 0$, but $\frac{1}{k^{5}}$ is not.

$$\begin{split} \sum_{k=0}^{\infty} \frac{k}{k^6 + 17} &= \frac{0}{0^6 + 17} + \sum_{k=1}^{\infty} \frac{k}{k^6 + 17} &\leq \quad \frac{0}{0^6 + 17} + \sum_{k=1}^{\infty} \frac{1}{k^5} \\ &\Rightarrow \sum_{k=0}^{\infty} \frac{k}{k^6 + 17} &\leq \quad 0 + \sum_{k=1}^{\infty} \frac{1}{k^5}. \end{split}$$

(Thus you have a_0 trailing along with you, but in this case it's 0.) Because the series $\sum_{k=1}^{\infty} \frac{1}{k^5}$ is a p-series with p = 5 > 1, this series converges, and so our original series converges as well, by the comparison test.

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

November 16, 2009 8 / 11

$$4. \sum_{k=0}^{\infty} \frac{k}{k^6 + 17}$$

Finding N so S_N approximates S to within 10^{-6} :

I need to find N so that
$$R_N = \sum_{k=N+1}^\infty rac{k}{k^6+17} \leq 10^{-6}.$$

If I can find N so that the larger remainder \sum

$$\sum_{k=1}^{5} rac{1}{k^5} \leq 10^{-6}$$
, then I'll

be done.

Unfortunately, our comparison series is not geometric. Bring the integral test into it, giving a string of inequalities:

$$\underbrace{\sum_{k=N+1}^{\infty} \frac{k}{k^6 + 17}}_{R_N} \leq \sum_{k=N+1}^{\infty} \frac{1}{k^5} \leq \int_N^{\infty} \frac{1}{x^5} \, dx.$$

 $k = \Lambda$

If I can find N so that the integral is less than 10^{-6} , then of course my original R_N will be as well.

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

November 16, 2009 9 / 11

$$4. \sum_{k=0}^{\infty} \frac{k}{k^6 + 17}$$

• Finding N so S_N approximates S to within 10^{-6} : (continued)

$$\int_{N}^{\infty} \frac{1}{x^{5}} dx \le 10^{-6} \quad \Rightarrow \quad \lim_{R \to \infty} -\frac{1}{4} x^{-4} \Big|_{N}^{R} \le 10^{-6} \Rightarrow 0 + \frac{1}{4N^{4}} \le 10^{-6}$$
$$4N^{4} \ge 10^{6} \quad \Rightarrow \quad N^{4} \ge \frac{10^{6}}{4} \Rightarrow N \ge (250000)^{1/4} \Rightarrow N \ge 22.4$$

Thus
$$S_{23}$$
 is within 10^{-6} of $\sum_{k=0}^{\infty} \frac{k}{k^6 + 17}$.
Using Maple, I therefore can say that

$$\sum_{k=0}^{\infty} \frac{k}{k^6 + 17} = 0.08582562924 \pm 10^{-6}.$$

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

5. $\sum_{\substack{m=2\\ This}}^{\infty} \frac{\ln(m)}{m^3}$ This problem is on the PS 11 supplement The series converges, and we can show that $S = S_{1,000,000} \pm 10^{-6}$.

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

November 16, 2009 11 / 11

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 の�?