Recall:

- Definition: An alternating series is one whose terms alternate in sign. That is, a series of the form a₁ − a₂ + a₃ − · · · where a_k is positive for all k ≥ 1.
- 2. Alternating Series Test:
 - Suppose $\lim_{k \to \infty} a_k = 0$ and $\{a_k\}$ is a non-negative decreasing series for all $k \ge 1$. Then the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ converges.
 - Furthermore, its limit lies between any two consecutive partial sums. That is, if the series converges to S, then S lies between S_N and S_{N+1} for any N. Because of this.

$$|S-S_N|\leq a_{N+1}.$$

Determine whether or not the following alternating series converge. For those that converge, first find upper and lower bounds, and then approximate accurate to within 0.001.

1.
$$\sum_{k=2}^{\infty} \frac{(-1)^k}{\ln(k)}$$

2.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^2 - 1}$$

3. $\sum_{j=3}^{\infty} \frac{(-1)^j}{4^j}$

Math 104-Calculus 2 (Sklensky)

In-Class Work

November 19, 2009 2 / 3

Determine whether or not the following alternating series converge conditionally, converge absolutely, or diverge.

1.
$$\sum_{j=0}^{\infty} (-1)^j \frac{e^j}{3^{j+1}+j}$$

2.
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{2k+2}{k^2+2k}$$

Math 104-Calculus 2 (Sklensky)

In-Class Work

November 19, 2009 3 / 3

3

999

Image: A math a math