Big Question:

Given any series $\sum_{k=0}^{\infty} a_k$, how do we determine whether or not the series converges? If it converges, how do we determine what it converges *to*, or is that even possible?

Methods we have so far: ∞

• Is
$$\sum_{k=0} a_k$$
 a geometric series?

If so, we can not only determine whether or not the series converges, but exactly what it converges to.

Does lim_{k→∞} a_k = 0? If so, then our results are inconclusive, but if lim_{k→∞} a_k ≠ 0, then by **the kth term test**, we know the series diverges.

Math 104-Calculus 2 (Sklensky)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りゅつ

Determine whether the following series converge or diverge, by drawing a picture that compares each series to an improper integral in a useful way. Think Riemann Sums. (Don't use the statement of the integral test - this is to help understand the integral test).

1.
$$\sum_{k=2}^{\infty} \frac{1}{k^2}$$

2.
$$\sum_{k=1}^{\infty} \frac{1}{k}$$

イロト 不得下 イヨト イヨト 二日

Goals: Be able to :

- 1. determine whether a series $\sum a_k$ converges or diverges.
- 2. If it converges, find the limit (that is, the value of the series) exactly, if possible.
- 3. If it converges but we can't find the limit exactly, be able to approximate it.

イロト イポト イヨト イヨト