1.
$$\sum_{k=2}^{\infty} \frac{1}{k^2} = \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$$

Represent this as a Riemann Sum for $\int_{a}^{\infty} \frac{1}{x^2} dx$:

 $\sum_{k=2}^{\infty} \frac{1}{k^2} \text{ as a left sum}$

0.8

0.6

0.4 -

0.2 -

4 D > 4 D > 4 E > 4 E >

1.
$$\sum_{k=2}^{\infty} \frac{1}{k^2} = \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$$

Because $\int_{a}^{\infty} \frac{1}{x^2} dx$ converges (a > 0), a sum that is **less** than the integral will also converge.

1.
$$\sum_{k=2}^{\infty} \frac{1}{k^2} = \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$$

$$\sum_{k=2}^{\infty} \frac{1}{k^2} \le \int_1^{\infty} \frac{1}{x^2}$$

Because p=2, the improper integral converges and so the series, which can not exceed the improper integral, must also converge.

Conclusion: $\sum_{k=2}^{\infty} \frac{1}{k^2}$ converges.

3 / 6

$$1. \sum_{k=1}^{\infty} \frac{1}{k}$$

Represent this as a Riemann Sum for $\int_a^\infty \frac{1}{x} dx$:

 $\sum_{k=1}^{\infty} \frac{1}{k} \text{ as a right sum}$

Because $\int_{3}^{\infty} \frac{1}{x} dx$ diverges (a > 0), a sum which is larger will also

diverge.

1.
$$\sum_{k=1}^{\infty} \frac{1}{k}$$

$$\sum_{k=1}^{\infty} \frac{1}{k} \ge \int_{1}^{\infty} \frac{1}{x}$$

Because p=1, the improper integral diverges and so the series, which is at least as large as the improper integral, must also diverge.

Conclusion: $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges.

Goals: Be able to:

- 1. determine whether a series $\sum a_k$ converges or diverges.
- 2. If it converges, find the limit (that is, the value of the series) exactly, if possible.
- 3. If it converges but we can't find the limit exactly, be able to approximate it.