
1.
∞∑

k=2

1

k2
=

1

4
+

1

9
+

1

16
+ . . .

Represent this as a Riemann Sum for

∫ ∞
a

1

x2
dx :

∞∑
k=2

1

k2
as a right sum

∞∑
k=2

1

k2
as a left sum
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∞∑
k=2

1

k2
as a right sum

∞∑
k=2

1

k2
as a left sum

Because

∫ ∞
a

1

x2
dx converges (a > 0), a sum that is less than the

integral will also converge.
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1.
∞∑

k=2

1

k2
=

1

4
+

1

9
+

1

16
+ . . .

∞∑
k=2

1

k2
≤

∫ ∞
1

1

x2

Because p = 2, the improper
integral converges and so the
series, which can not exceed
the improper integral, must also
converge.

Conclusion:
∞∑

k=2

1

k2
converges.
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1.
∞∑

k=1

1

k

Represent this as a Riemann Sum for

∫ ∞
a

1

x
dx :

∞∑
k=1

1

k
as a right sum

∞∑
k=1

1

k
as a left sum
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1.
∞∑

k=1

1

k

∞∑
k=1

1

k
as a right sum

∞∑
k=1

1

k
as a left sum

Because

∫ ∞
a

1

x
dx diverges (a > 0), a sum which is larger will also

diverge.
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1.
∞∑

k=1

1

k

∞∑
k=1

1

k
≥

∫ ∞
1

1

x

Because p = 1, the improper in-
tegral diverges and so the series,
which is at least as large as the
improper integral, must also di-
verge.

Conclusion:
∞∑

k=1

1

k
diverges.
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Goals: Be able to :

1. determine whether a series
∑

ak converges or diverges.

2. If it converges, find the limit (that is, the value of the series) exactly,
if possible.

3. If it converges but we can’t find the limit exactly, be able to
approximate it.
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