Remember:

- ► There is a difference between the sequence of terms {a_k} converging and the sequence of partial sums {S_n} converging.
- ► The *n*-th term test says that if the terms {*a_k*} converge to anything other than 0, or don't converge at all, then there's no way that the partial sums {*S_n*} can converge.
- It does not tell us anything about what happens if the *n*th term *does* converge to 0.

• Example: The sequence $\left\{\frac{1}{k}\right\}$ converges to 0, but the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges.

Math 104-Calculus 2 (Sklensky)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Integral Test for Positive-Term Series:

Suppose that for all $x \ge 1$, a(x) is continuous, non-negative, and decreasing. Let $a_k = a(k)$ for all k = 1, 2, ...

Then the series $\sum_{k=1}^{\infty} a_k$ and the integral $\int_1^{\infty} a(x) dx$ either both converge or both diverge.

The relationship is:

$$\int_1^\infty a(x) \ dx \leq \sum_{k=1}^\infty a_k \leq a_1 + \int_1^\infty a(x) \ dx$$

Math 104-Calculus 2 (Sklensky)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Immediate Consequence of the Integral Test:

Since $\frac{1}{x^p}$ is a continuous, positive, and decreasing function on $[a, \infty)$ for all a > 0 and for all p > 0, the integral test applies to $a(x) = \frac{1}{x^p}$ and $\sum_{k=1}^{\infty} \frac{1}{k^p}$ for all p > 0.

Thus $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges whenever $\int_1^{\infty} \frac{1}{x^p} dx$ does, and diverges whenever the integral does.

So ...

$$\sum_{k=1}^{\infty}rac{1}{k^{
ho}} egin{cases} ext{converges if } p>1 \ ext{diverges if } p\leq1 \end{cases}$$

Such series are called **p** series.

Math 104-Calculus 2 (Sklensky)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Math 104-Calculus 2 (Sklensky)

In-Class Work

November 5, 2009 4 / 6

- 2

<ロ> (日) (日) (日) (日) (日)

Use the integral test to determine whether the following series converge or diverge.

1.
$$\sum_{j=3}^{\infty} \frac{18j^2}{3j^3 + 1}$$

2.
$$\sum_{k=1}^{\infty} \frac{k}{e^{k^2}}$$

Math 104-Calculus 2 (Sklensky)

In-Class Work

November 5, 2009 5 / 6

- 34

(日)

You've shown that
$$\sum_{k=1}^{\infty} \frac{k}{e^{k^2}}$$
 converges.

Let
$$S = \sum_{k=1}^{\infty} \frac{k}{e^{k^2}}.$$

- 1. Use the integral test to find lower and upper limits for the value of S.
- 2. Find a number N such that the partial sum S_N approximates the sum of the series within 0.001.

Math 104-Calculus 2 (Sklensky)

In-Class Work

イロト イポト イヨト イヨト