		$c\infty$
1(b)	If $f(x)$ does conv	rerge to 0 as $x \to \infty$, must $\int_{-\infty}^{\infty} f(x) dx$
	automatically cor	nverge to a finite number? That is, is $f(x) \rightarrow 0$ a
	sufficient condition	on for $\int_{a}^{\infty} f(x) dx$ to converge to a finite number?
	Functions that	What $\int_{-\infty}^{\infty} f(x) dx$
	converge to 0	does
	xe^{-x^2}	converges
	$\frac{1}{x^2}$	converges
	$\frac{1}{x^3}$	converges
	$\frac{1}{x}$	diverges
	Thus knowing that $f(x) \to \infty$ is <i>not</i> sufficient information to	
	conclude that \int	f(x) dx converges!
	Ja	

Math 104-Calculus 2 (Sklensky)

October 14, 2009 1 / 5

(ロ) (個) (E) (E) (E) (の)(C)

Important Lesson #1

- There is a huge distinction between f(x) converging that is, lim f(x) being finite – and I = ∫_a[∞] f(x) dx converging. Just because you can find lim f(x), and it's a finite number, does not mean that ∫_a[∞] f(x) dx will be finite.
 In fact, if lim f(x) exists but is not 0, I diverges! No need to
 - investigate any further.
- If lim f(x) = 0, I may converge or it may diverge − you must investigate further.

2. Let $I = \int_{1}^{\infty} \frac{1}{x^{p}} dx$. Determine whether *I* converges or diverges if (a) p > 1:

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{R \to \infty} \int_{1}^{R} x^{-p} dx = \lim_{R \to \infty} \frac{1}{-p+1} x^{-p+1} \Big|_{1}^{R}$$
$$= \lim_{R \to \infty} \frac{1}{1-p} R^{1-p} - \frac{1}{1-p}.$$

 $p > 1 \Rightarrow 1 - p < 0 \Rightarrow p - 1 > 0$

$$\lim_{R \to \infty} R^{1-p} = \lim_{R \to \infty} \frac{1}{R^{p-1}} = 0.$$

Thus $\int_{1}^{\infty} \frac{1}{x^{p}} dx = 0 - \frac{1}{1-p} = \frac{1}{p-1}.$

Math 104-Calculus 2 (Sklensky)

October 14, 2009 3 / 5

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

2(b) p = 1

We've already done this case. We know that $\int_{1}^{\infty} \frac{1}{x} dx = \infty$.

2(c) 0 :

As in the case of p > 1,

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{R \to \infty} \frac{1}{1 - p} R^{1 - p} - \frac{1}{1 - p}.$$

 $0 0 \Rightarrow \lim_{R \to \infty} R^{1-p} \to \infty.$ In this case, the integral again diverges.

Math 104-Calculus 2 (Sklensky)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

2(d) p = 0:

$$\int_1^\infty \frac{1}{x^p} \, dx = \int_1^\infty 1 \, dx = \infty,$$

as we've already seen.

2(e) p < 0: Let a = -p > 0. $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} x^{-p} dx = \int_{1}^{\infty} x^{a} dx.$

As $x \to \infty$, $x^a \to \infty$, and so the area under this curve is clearly infinite!

Math 104-Calculus 2 (Sklensky)