Using $P_n(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \cdots + a_n x^n$, where $a_i = \frac{f^{(i)}(0)}{1}$, the 6th Taylor polynomial for cos(x) based at x = 0 is

$$cos(x) \approx P_6(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}.$$

Remember: Idea behind Taylor polynomials is that the function and the derivatives of a Taylor polynomial at the base point (here, $x_0 = 0$) should match the original function (here, cos(x)) and its derivatives at the base point.

Do they?

$$f(x) = \cos(x)$$

 $P_6(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$

$$cos(x)$$
 and derivatives at $x_0=0$ $f(x)=cos(x)$ $f(0)=1$ $f'(x)=-sin(x)$ $f'(0)=0$ $f''(x)=-cos(x)$ $f''(0)=0$ $f'''(x)=-sin(x)$ $f''(0)=-1$ $f'''(x)=-sin(x)$ $f'''(0)=-1$ $f'''(x)=sin(x)$ $f'''(0)=0$ $f'''(x)=sin(x)$ $f'''(0)=0$ $f^{(4)}(x)=cos(x)$ $f^{(4)}(0)=1$ $f^{(5)}(x)=-sin(x)$ $f^{(5)}(0)=0$ $f^{(6)}(x)=-cos(x)$ $f^{(6)}(0)=-1$ $f^{(6)}(x)=-cos(x)$ $f^{(6)}(0)=-1$ $f^{(6)}(x)=-cos(x)$ $f^{(6)}(0)=-1$ $f^{(6)}(x)=-cos(x)$ $f^{(6)}(0)=-1$

After the 6th, the derivs of cos(x) and $P_6(x)$ no longer *must* match, although in fact, all the odd derivatives *will* match (they'll both be 0).

2/3

Recall: if
$$a_i = \frac{f^{(i)}(x_0)}{i!}$$
, $P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 \cdots + a_n(x - x_0)^n$,

Let $f(x) = e^x$.

- (a) Find $P_1(x)$, $P_2(x)$, $P_3(x)$, and $P_4(x)$ for f(x) based at $x_0 = 0$
- (b) Graph e^x , $P_1(x)$, $P_2(x)$, $P_3(x)$ and $P_4(x)$ all on the same set of axes. Find intervals on which each Taylor polynomial is a good approximation.
- (c) Approximate $e^{-1/2}$ using $P_4(x)$. Based on the graph, will that be an over- or under-estimate? Compare to what Maple gives for $e^{-1/2}$.