Let
$$f(x) = e^x$$
.
(a) Find $P_1(x)$, $P_2(x)$, $P_3(x)$, and $P_4(x)$ for $f(x)$ based at $x_0 = 0$
 $P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \dots + a_n(x - x_0)^n$,
where $a_k = f^{(k)}(x_0)/k!$.

$f(x) = e^x$	f(0) = 1	$a_0 = 1/0! = 1$
$f'(x) = e^x$	f'(0) = 1	$a_1=1/1!=1$
$f''(x) = e^x$	f''(0)=1	$a_2 = 1/2! = 1/2$
$f^{(3)}(x) = e^x$	$f^{(3)}(0) = 1$	$a_3 = 1/3! = 1/6$
$f^{(4)}(x) = e^x$	$f^{(4)}(0) = 1$	$a_4 = 1/4! = 1/24$

Therefore,

$$\begin{array}{ll} P_1(x) = 1 + x & P_3(x) = 1 + x + x^2/2 + x^3/6 \\ P_2(x) = 1 + x + x^2/2 & P_4(x) = 1 + x + x^2/2 + x^3/6 + x^4/24 \end{array}$$

Notice: to get from $P_k(x)$ to $P_{k+1}(x)$, I just add the next term in, rather than starting all over again.

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

October 19, 2009 1 / 8

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1(b) Graph e^x , $P_1(x)$, $P_2(x)$, $P_3(x)$ and $P_4(x)$ all on the same set of axes. Find intervals on which each Taylor polynomial is a good approximation.

Zooming in on the graphs ...

- P₁ is never particularly accurate ... maybe from about [-0.01, 0.01] it's pretty good.
- ▶ P₂ is indistinguishable on about [-.4, .4].
- ▶ P₃ is indistinguishable on about [-.8, .8].
- ▶ P₄ is indistinguishable on about [-1.5, 1.5]

Moral: The higher degree polynomial you have, the farther away from your base point you can go and still have a good approximation.

1(c) Approximate $e^{1/2}$ using $P_4(x)$; compare to what Maple gives for $e^{1/2}$.

$$e^{-1/2} \approx P_4(-\frac{1}{2})$$

$$\approx 1 - \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} - \frac{1}{6} \cdot \frac{1}{8} + \frac{1}{24} \cdot \frac{1}{16}$$

$$\approx \frac{233}{384} \approx 0.606771$$

Although it's hard to tell, it looks as if the graph of $P_4(x)$ is above the graph of e^x on the left of the y-axis, and so $P_4(-\frac{1}{2})$ is an over-estimate.

Maple gives 0.60653, so indeed P_4 did over-estimate at x = -.5.

Math 104-Calculus 2 (Sklensky)

Solutions to In-Class Work

October 19, 2009 3 / 8