Theorem (Special Case): The *n*th Taylor Polynomial for f(x) based at x = 0 (a.k.a. the *n*th Maclaurin polynomial) is given by

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \cdots + a_n x^n$$
, where $a_i = \frac{f^{(i)}(0)}{i!}$.

Theorem (General Case): The *n*th Taylor polynomial for f(x) based at $x = x_0$ is given by $P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \cdots + a_n(x - x_0)^n,$

where
$$a_i = \frac{f^{(i)}(x_0)}{i!}$$

The idea behind Taylor polynomials approximating a function f(x) is to focus on how f behaves at one point x_0 . We match not only the y-values at x_0 , but also the slopes (the first derivative), the concavity (the second derivative), and however many more derivatives we choose -n is the number of derivatives we're choosing to match.

2 / 4

- The idea behind Taylor polynomials approximating a function f(x) is to focus on how f behaves at one point x_0 . We match not only the y-values at x_0 , but also the slopes (the first derivative), the concavity (the second derivative), and however many more derivatives we choose -n is the number of derivatives we're choosing to match.
- ▶ Based on a few examples, it seems likely that the higher n is, the better an approximation $P_n(x)$ gives.

▶ We want to find a polynomial of degree n, $P_n(x)$ so that $P_n(x)$ and its first *n* derivatives all match f(x) and its first *n* derivatives at x = 0.

- We want to find a polynomial of degree n, $P_n(x)$ so that $P_n(x)$ and its first n derivatives all match f(x) and its first n derivatives at x = 0.
- \triangleright An arbitrary polynomial of degree n can be written as

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

- ▶ We want to find a polynomial of degree n, $P_n(x)$ so that $P_n(x)$ and its first *n* derivatives all match f(x) and its first *n* derivatives at x = 0.
- ▶ An arbitrary polynomial of degree *n* can be written as

$$P_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

show that in order for the first n derivatives to match at the base point x = 0, the coefficients a_0 through a_n must be given by the formula $a_i = \frac{f^{(i)}(0)}{i!}$.

Let $f(x) = \ln(x)$ and let $P_5(x)$ be the 5th order Taylor polynomial for f(x) at $x_0 = 1$.

- 1. Find $P_5(x)$
- 2. Verify your answer by graphing $P_5(x)$ and f(x) on the same set of axes.
- 3. Use $P_5(x)$ to find an approximation for $\ln(1/2)$ and for $\ln(2)$. Based on the graphs, will these be larger or smaller than the actual value of $\ln(1/2)$ and $\ln(2)$? How good approximations does it look like they are?
- 4. By looking at the graph of the approximation error $|\ln(x) P_5(x)|$, find an interval centered at 1 in which the approximation error is less than .01.

4 / 4