Taylor's Theorem:

Let f(x) be a function which is repeatedly differentiable on an interval I containing x_0 . Suppose $P_n(x)$ is the *n*-th order Taylor polynomial based at x_0 . Further suppose K_{n+1} is a bound for $|f^{(n+1)}(x)|$ on I. That is,

$$|f^{(n+1)}(x)| \leq K_{n+1}$$
 for all $x \in I$

Then for all $x \in I$,

$$|f(x) - P_n(x)| \le \frac{K_{n+1}}{(n+1)!}|x - x_0|^{n+1}$$

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 23, 2009 1 / 6

イロト 不得 トイヨト イヨト 二日

Let $f(x) = \sqrt{x}$. Find $P_3(x)$ for f(x) at the base point $x_0 = 64$. $f(x) = \sqrt{x} = x^{1/2} \qquad f(64) = 8 \qquad a_0 = \frac{f(64)}{0!} = 8$ $f'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}} \qquad f'(64) = \frac{1}{2 \cdot 8} = \frac{1}{16} \qquad a_1 = f'(64)/1! = \frac{1}{16}$ $f''(x) = -\frac{1}{4}x^{-3/2}$ $f'''(x) = \frac{3}{8}x^{-5/2}$ $a_2 = f''(64)/2! = -\frac{1}{4006}$ f''(64) = -1/2048f'''(64) = 3/262144 $a_3 = f'''(64)/3! = \frac{1}{524288}$ $f^{(4)}(x) = -\frac{15}{16}x^{-7/2}$ Thus

$$P_3(x) = 8 + \frac{1}{16}(x - 64) - \frac{1}{4096}(x - 64)^2 + \frac{1}{524288}(x - 64)^3.$$

Math 104-Calculus 2 (Sklensky)

October 23, 2009 2 / 6

What can you say about the error committed by using $P_3(x)$ as an approximation for \sqrt{x} on the interval [50, 80]?

Taylor's theorem:

$$|f(x) - P_3(x)| \le \frac{K_4}{(4)!}|x - 64|^4,$$

Need to choose $K_4 \ge |f^{(4)}(x)|$ on [50, 80] $|f^{(4)}(x)| = \frac{15}{16}x^{-7/2}$. Looking at the graph of $|f^{(4)}(x)|$ on [50, 80], can choose $K_4 = 0.0000012$.

$$|\sqrt{x} - P_3(x)| \le \frac{.0000012}{4!} |80 - 64|^4 = .00328$$

Math 104-Calculus 2 (Sklensky)

October 23, 2009 3 / 6

Approximating π

Notice that $\arctan(1) = y \Leftrightarrow \tan(y) = 1 \Leftrightarrow \sin(y) = \cos(y)$, so

 $\arctan(1) = \pi/4.$

Plan: Approximate π by finding a Taylor polynomial for arctan(x) based at x = 0 and using it to approximate arctan $(1) = \pi/4$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

$f(x) = \arctan(x)$	f(0) = 0	$a_0 = \frac{0}{0!} = 0$
$f'(x) = \frac{1}{1+x^2}$	f'(0) = 1	$a_1 = \frac{1}{1!}! = 1$
$f''(x) = -\frac{2x}{(1+x^2)^2}$	f''(0) = 0	$a_2 = \frac{0}{2!} = 0$
$f^{(3)}(x) = \frac{8x^2}{(1+x^2)^3} - \frac{2}{(1+x^2)^2}$	$f^{(3)}(0) = -2$	$a_3 = -\frac{2}{3!} = -\frac{1}{3}$
$f^{(4)}(x) = \frac{-48x^3}{(1+x^2)^4} + \frac{24x}{(1+x^2)^3}$	$f^{(4)}(0) = 0$	$a_4=\frac{0}{4!}=0$
$f^{(5)}(x) = \frac{384x^4}{(1+x^2)^5}$	$f^{(5)}(0) = 24$	$a_5 = \frac{4!}{5!} = \frac{1}{5}$
$-\frac{288x^2}{(1+x^2)^4}+\frac{24}{(1+x^2)^3}$	= 4!	
	$f^{(6)}(0) = 0$	<i>a</i> ₆ = 0
	$f^{(7)}(0) = -6!$	$a_7 = -\frac{6!}{7!} = -\frac{1}{7}$

Math 104-Calculus 2 (Sklensky)

In-Class Work

Based on these results,

$$P_7(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7},$$

and in fact, building on the pattern we see here

$$P_{99}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + \frac{x^{97}}{97} - \frac{x^{99}}{99}.$$

Thus

$$\frac{\pi}{4} = \arctan(1) \approx 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{1}{97} - \frac{1}{99}$$
$$\approx 0.7803986631$$
$$\Rightarrow \pi \approx 3.121594652$$

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 23, 2009 6 / 6

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 - のへで