## **Example:**

Find  $\int \sqrt{9 + (4x + 5)^2} \, dx$ .

You don't know how to do this integral.

But it doesn't look very hard, so you think maybe you're just missing something.

You turn to Maple, and it produces:

$$\frac{x}{2}\sqrt{9+16x^2}+\frac{9}{8}\operatorname{arcsinh}\left(\frac{4x}{3}\right).$$

Since you don't know anything about the arcsinh (inverse hyperbolic sine) function, you know you really didn't know how to do that integral.

You could just proceed using this result, but it's totally meaningless to you.

Math 104-Calculus 2 (Sklensky)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example: Find  $\int \sqrt{9 + (4x + 5)^2} dx$ 

An alternative: Check whether integral tables will help. Some headings:

Forms Involving  $\sqrt{a^2 - u^2}$ , a > 0Forms Involving a + bu Forms Involving  $\sqrt{u^2 - a^2}$ , a > 0Forms Involving  $(a + bu)^2$ Forms Involving  $\sqrt{2au - u^2}$ Forms Involving  $\sqrt{a + bu}$ Forms Involving  $\sqrt{a^2 + b^2}$ , a > 0Forms Involving sin(u) or cos(u)

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 7, 2009 2 / 13

Example:  
Find 
$$\int \sqrt{9 + (4x + 5)^2} dx$$

Forms Involving  $\sqrt{a^2 + b^2}$ , a > 021.  $\int \sqrt{a^2 + u^2} \, du = \frac{1}{2}u\sqrt{a^2 + u^2} + \frac{1}{2}a^2 \ln\left|u + \sqrt{a^2 + u^2}\right| + c$ 22.  $\int u^2 \sqrt{a^2 + u^2} \, du = \frac{1}{8} u (a^2 + 2u^2) \sqrt{a^2 + u^2} - \frac{1}{8} a^4 \ln \left| u + \sqrt{a^2 + u^2} \right| + c$ 23.  $\int \frac{\sqrt{a^2 + u^2}}{u} \, du = \sqrt{a^2 + u^2} - a \ln \left| \frac{a + \sqrt{a^2 + u^2}}{u} \right| + c$ 24.  $\int \frac{\sqrt{a^2 + u^2}}{u^2} \, du = \ln \left| u + \sqrt{a^2 + u^2} \right| - \frac{\sqrt{a^2 + u^2}}{u} + c$ 25.  $\int \frac{1}{\sqrt{a^2 + u^2}} \, du = \ln \left| u + \sqrt{a^2 + u^2} \right| + c$ 26.  $\int \frac{u^2}{\sqrt{a^2 + u^2}} \, du = \frac{1}{2} u \sqrt{a^2 + u^2} - \frac{1}{2} a^2 \ln \left| u + \sqrt{a^2 + u^2} \right| + c$ 

Math 104-Calculus 2 (Sklensky)

October 7, 2009 3 / 13

Example:  
Find 
$$\int \sqrt{9 + (4x + 5)^2} dx$$

Forms Involving  $\sqrt{a^2 + b^2}, a > 0$ 

21. 
$$\int \sqrt{a^2 + u^2} \, du = \frac{1}{2}u\sqrt{a^2 + u^2} + \frac{1}{2}a^2\ln\left|u + \sqrt{a^2 + u^2}\right| + c$$

Let a = 3 and  $u = 4x + 5 \Rightarrow du = 4 dx$ 

$$\int \sqrt{9 + (4x + 5)^2} \, dx = \frac{1}{4}\sqrt{a^2 + u^2} \, du$$

Thus using the formula from the integral table,

$$\int \sqrt{9 + (4x + 5)^2} \, dx = \frac{1}{4} \left[ \frac{4x + 5}{2} \sqrt{9 + (4x + 5)^2} + \frac{9}{2} \ln |4x + 5 + \sqrt{9 + (4x + 5)^2}| \right] + c.$$

Math 104-Calculus 2 (Sklensky)

October 7, 2009 4 / 13

$$\int_{-1}^{2} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \Big|_{-1}^{2} = \left(-\frac{1}{2} - 1\right) = -\frac{3}{2}.$$

## How do we know something went wrong here?

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 7, 2009 5 / 13

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 の久(で)

Can we make sense of  $\int_{-1}^{2} \frac{1}{x^2} dx$ ?



$$\int_{-1}^{-.5} \frac{1}{x^2} dx + \int_{.5}^2 \frac{1}{x^2} dx = 2.5$$

$$\int_{-1}^{-.4} \frac{1}{x^2} dx + \int_{.4}^{2} \frac{1}{x^2} dx = 3.5$$

In-Class Work

October 7, 2009 6 / 13

- 2

990

(ロ) (四) (三) (三)





$$\int_{-1}^{-.3} \frac{1}{x^2} \, dx + \int_{.3}^2 \frac{1}{x^2} \, dx = 5.1666666$$

$$\int_{-1}^{-.2} \frac{1}{x^2} dx + \int_{.2}^{2} \frac{1}{x^2} dx = 8.5$$

Math 104-Calculus 2 (Sklensky)

In-Class Work

.)

October 7, 2009 7 / 13

E 990

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

What happens as we move in closer to x = 0?

| R         | $\int_{-1}^{-R} \frac{1}{x^2}  dx + \int_{R}^{2} \frac{1}{x^2}  dx$ |
|-----------|---------------------------------------------------------------------|
| 0.5       | Signed Area $= 2.5$                                                 |
| 0.4       | Signed Area $= 3.5$                                                 |
| 0.3       | Signed Area $= 5.1666666$                                           |
| 0.2       | Signed Area $= 8.5$                                                 |
| 0.1       | Signed Area $= 18.5$                                                |
| 0.01      | Signed Area $= 198.5$                                               |
| 0.001     | Signed Area $= 1998.5$                                              |
| 0.0001    | Signed Area $= 19998.5$                                             |
| 0.00001   | Signed Area $= 199998.5$                                            |
| 0.000001  | Signed Area $= 1999998.5$                                           |
| 0.0000001 | Signed Area $= 19999998.5$                                          |

Math 104-Calculus 2 (Sklensky)

October 7, 2009 8 / 13



Now what happens as we move in closer to x = 0?

| R        | $\int_{R}^{1} \frac{1}{\sqrt{x}} dx$ |
|----------|--------------------------------------|
| 0.2      | Signed Area $= 1.105572809$          |
| 0.1      | Signed Area $= 1.367544468$          |
| 0.01     | Signed Area $= 1.8$                  |
| 0.001    | Signed Area $= 1.936754447$          |
| 0.0001   | Signed Area $= 1.98$                 |
| 0.00001  | Signed Area $= 1.993675445$          |
| 0.000001 | Signed Area $= 1.998$                |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の久(?)

## **Definition:**

If f is continuous on the interval [a, b), but  $|f(x)| \to \infty$  as  $x \to b^-$ , we define the **improper integral** of f on [a, b] by

$$\int_a^b f(x) \ dx = \lim_{R \to b^-} \int_a^R f(x) \ dx.$$

Similarly, if f is continuous on the interval (a, b], but  $|f(x)| \to \infty$  as  $x \to a^+$ , we define the improper integral

$$\int_a^b f(x) \ dx = \lim_{R \to a^+} \int_R^b f(x) \ dx.$$

In either case, if the limit exists and equals some finite value L, we say that the improper integral **converges** to L. If the limit does not exist (whether because it equals  $\pm \infty$  or because for some other reason), we say that the improper integral **diverges**.

Math 104-Calculus 2 (Sklensky)



Determine whether the following improper integrals converge or diverge. For those that converge, what value do they converge to?

1. 
$$\int_{0}^{1} \frac{1}{x^{1/3}} dx$$
  
2. 
$$\int_{0}^{\pi/2} \frac{\sin(x)}{\sqrt{\cos(x)}} dx$$
  
3. 
$$\int_{0}^{1} \frac{1}{x} dx$$
  
4. 
$$\int_{0}^{1} \frac{1}{x^{3}} dx$$