• We now know that integral $\int_0^1 \frac{1}{\sqrt{x}} dx$ is an improper integral. We've seen that this converges, to 2.

(日) (同) (日) (日)

This "area" is 2, whether we find it by integrating with respect to x or with respect to y! In other words ...

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2009 1 / 4

This "area" is 2, whether we find it by integrating with respect to x or with respect to y! In other words ...

$$2 = \int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 1 \, dy + \int_1^\infty \frac{1}{y^2} \, dy.$$

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2009 1 / 4

Definition:

If f(x) is continuous on the interval $[a, \infty)$, we define the **improper** integral $\int_{a}^{\infty} f(x) dx$ to be

$$\int_a^\infty f(x) \ dx \stackrel{\text{\tiny def}}{=} \lim_{R \to \infty} \int_a^R f(x) \ dx.$$

Similarly, if f(x) is continuous on the interval $(-\infty, a]$, we define

$$\int_{-\infty}^{a} f(x) \ dx \stackrel{\text{\tiny def}}{=} \lim_{R \to \infty} \int_{-R}^{a} f(x) \ dx.$$

In either case, if the limit exists (and equals some value L), we say that the improper integral **converges** (to L). If the limit does not exist (whether because it is infinite or for other reasons), we say that the improper integral **diverges**.

Math 104-Calculus 2 (Sklensky)

1. As $x \to \infty$, does each *integrand* diverge or converge (if so, to what?) Also, does each improper *integral* diverge or converge (if so, to what?)

a.
$$\int_{1}^{\infty} \frac{1}{x^3} dx$$
 b. $\int_{1}^{\infty} 1 + \frac{1}{x^2} dx$ c. $\int_{1}^{\infty} \frac{1}{x} dx$ d. $\int_{0}^{\infty} x e^{-x^2} dx$

2. Think about all the results you've seen, as well as the big picture.
(a) Is it *necessary* that f(x) converge to 0 as x → ∞ in order for ∫_a[∞] f to converge to a finite number?

(b) If f(x) does converge to 0 as $x \to \infty$, must $\int_{a}^{\infty} f$ converge to a finite number? That is, is $f(x) \to 0$ a sufficient condition for $\int_{a}^{\infty} f$ to converge to a finite number?

Math 104-Calculus 2 (Sklensky)

October 9, 2009 3 / 4

イロト 不得 トイヨト イヨト 二日

Important Lessons:

 There is a huge distinction between f(x) converging – that is, lim f(x) being finite – and ∫_a[∞] f(x) dx converging. Just because you can find lim f(x), and it's a finite number, does **not** mean that ∫_a[∞] f(x) dx will be finite.

Important Lessons:

1. There is a huge distinction between f(x) converging – that is, $\lim_{x \to \infty} f(x) \text{ being finite - and } \int_{a}^{\infty} f(x) \, dx \text{ converging. Just because}$ you can find $\lim_{x \to \infty} f(x)$, and it's a finite number, does **not** mean that $\int_{a}^{\infty} f(x) \, dx \text{ will be finite.}$

2. In fact, if $\lim_{x\to\infty} f(x)$ exists **but is not 0**, $\int_a^{\infty} f$ diverges! No need to investigate any further.

Important Lessons:

- 1. There is a huge distinction between f(x) converging that is, $\lim_{x \to \infty} f(x) \text{ being finite - and } \int_{a}^{\infty} f(x) \, dx \text{ converging. Just because}$ you can find $\lim_{x \to \infty} f(x)$, and it's a finite number, does **not** mean that $\int_{a}^{\infty} f(x) \, dx \text{ will be finite.}$
- 2. In fact, if $\lim_{x\to\infty} f(x)$ exists **but is not 0**, $\int_a^{\infty} f$ diverges! No need to investigate any further.
- 3. If $\lim_{x\to\infty} f(x)$ is 0, $\int_{a}^{\infty} f$ may converge or it may diverge to find out, you must actually do the antidifferentiation and the limit.

Math 104-Calculus 2 (Sklensky)

October 9, 2009 4 / 4