$$1(a) \int_1^\infty \frac{1}{x^3} dx$$

▶ $1/x^3$ converges to 0 as $x \to \infty$

$$\int_{1}^{\infty} \frac{1}{x^{3}} dx = \lim_{R \to \infty} \int_{1}^{R} x^{-3} dx = \lim_{R \to \infty} \left(-\frac{1}{2} \cdot \frac{1}{x^{2}} \right) \Big|_{1}^{R}$$
$$= \lim_{R \to \infty} \left(-\frac{1}{2R^{2}} + \frac{1}{2} \right) = \frac{1}{2}$$

This improper integral converges, to $\frac{1}{2}$.

$$\int_{1}^{\infty} 1 + \frac{1}{x^2} dx = \int_{1}^{\infty} 1 dx + \int_{1}^{\infty} \frac{1}{x^2} dx$$

We've seen that the first integral on the right diverges (to ∞), the second one converges (to 1).

Because this sum does not approach a finite number, it diverges.

Notice: f converges as $x \to \infty$ but $\int_{0}^{\infty} f$ diverges.

1(c)
$$\int_{1}^{\infty} \frac{1}{x} dx$$

$$\frac{1}{x} \to 0 \text{ as } x \to \infty$$

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{1}{x} dx = \lim_{R \to \infty} \ln(x) \Big|_{1}^{R}$$
$$= \lim_{R \to \infty} (\ln(R) - \ln(1)) = \lim_{R \to \infty} \ln(R) = \infty$$

This improper integral diverges (slowly).

Notice: f converges to 0 as $x \to \infty$ but $\int_a^\infty f$ diverges!

1(d)
$$\int_{0}^{\infty} xe^{-x^2} dx$$

As $x \to \infty$, $\frac{x}{e^{x^2}} \to \frac{\infty}{\infty}$. Another limit we can't do b/c it's in indeterminate form! Looking at a graph of xe^{-x^2} , can see that integrand approaches 0.

Let $u = -x^2$, so du = -2x dx, or $-\frac{1}{2} du = x dx$ Also, $x = 0 \Rightarrow u = 0$; $x = \infty \Rightarrow u = -\infty$.

$$\int_{0}^{\infty} x e^{-x^{2}} dx = -\frac{1}{2} \int_{0}^{-\infty} e^{u} du = \frac{1}{2} \int_{-\infty}^{0} e^{u} du = \frac{1}{2} \lim_{R \to \infty} e^{u} \Big|_{-R}^{0}$$
$$= \frac{1}{2} \lim_{R \to \infty} 1 - e^{-R} = 1 - \lim_{R \to \infty} \frac{1}{e^{R}} = 1$$

The improper integral converges, to 1.

- 2. Think about all the results you've seen, as well as the big picture.
 - (a) Is it *necessary* that f(x) converge to 0 as $x \to \infty$ in order for $\int_{-\infty}^{\infty} f(x) dx$ to converge to a finite number?

Convergent integral	what f converges to
$\int_{1}^{\infty} \frac{1}{x^2} dx$	$\frac{1}{x^2} \rightarrow 0$
$\int_{1}^{\infty} \frac{1}{x^3} dx$	$\frac{1}{x^3} \rightarrow 0$
$\int_0^\infty x e^{-x^2} \ dx$	$xe^{-x^2} \rightarrow 0$

For what it's worth, so far every example that we've seen of a convergent improper integral has at an integrand that converges to 0 as $x \to \infty$. But that's not enough.

2(a) (continued)

As $x \to \infty$, $f(x) \to \infty$, and $\int_a^\infty f(x) \ dx = \infty$

As
$$x \to \infty$$
, $f(x) \to k \neq 0$, and

$$\int_{a}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{a}^{R} f(x) dx$$

$$> \lim_{R \to \infty} \int_{a}^{R} k dx$$

$$> \lim_{R \to \infty} kR = \pm \infty$$

6 / 8

2(a) (continued)

As $x \to \infty$, $\lim_{x \to \infty} f(x)$ d.n.e., and $\int_a^\infty f(x) \ dx = \lim_{R \to \infty} f(x) \ dx$ d.ne., so the integral diverges

Conclusion: The only way $\int_a^\infty f(x) \ dx$ can have a **hope** of converging to a finite number is if $\lim_{x\to\infty} f(x) = 0$. In other words, if $\lim_{x\to\infty} f(x) \neq 0$, $\int_a^\infty f(x) \ dx$ must diverge.

2(b) If f(x) does converge to 0 as $x \to \infty$, must $\int_{2}^{b} f(x) dx$ automatically converge to a finite number? That is, is $f(x) \stackrel{j}{\rightarrow} 0$ a sufficient condition for $\int_{-\infty}^{\infty} f(x) dx$ to converge to a finite number?

Ja	
Functions that	What $\int_{a}^{\infty} f(x) dx$
converge to 0	does
xe^{-x^2}	converges
$\frac{1}{x_1^2}$	converges
$\frac{1}{x^3}$	converges
$\frac{1}{x}$	diverges

Thus knowing that $f(x) \to \infty$ is *not* sufficient information to conclude that $\int_{0}^{\infty} f(x) dx$ converges!