
1. The solid formed when the graph of y = x2 + 1 from x = 0 to x = 2
is rotated about the x-axis.
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Volume =

∫ 2

0
A(x) dx = π

∫ 2

0
radius2 dx = π

∫ 2

0
(x2 + 1)2 dx

= π

∫ 2

0
x4 + 2x2 + 1 dx = π(

x5

5
+
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3
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= π[(
32

5
+

16

3
+ 2)− 0] = π(

96 + 80 + 30

15
) =

206π
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2. The solid formed when the region bounded by y = x2 and y = 4 is
rotated about the x-axis.
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Volume = 2 ·
∫ 2

0
A(x) dx = 2π

∫ 2

0
(outer r)2 − (inner r)2 dx

= 2π

∫ 2

0
(4)2 − (x2)2 dx = 2π

∫ 2

0
16− x4 dx

= 2π(16x − x5

5
)

∣∣∣∣2
0

= 2π[(32− 32
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)− 0] = 2π(
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) =

256π
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3(a). y = x2 + 1 from x = 0 to x = 2, rotated about the y axis.

Because we were only told to rotate the curve y = x2 + 1 and find
the enclosed volume, notice that even though we’re rotating the same
curve as we did in (1), we’re enclosing a totally different volume:
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Rotating around y -axis ⇒ Circular cross-section are perp to y -axis
⇒ Integrate with respect to y , and radius is x = g(y).
Rewriting y = x2 + 1 as x = g(y): x =

√
y − 1.

Lowest y : y = 1; Biggest y : y = 5.
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3(a) (continued)

Volume =

∫ 5

1
A(y) dy = π

∫ 5

1
radius2 dy

= π

∫ 5

1
(
√

y − 1)2 dy

= π

∫ 5

1
y − 1 dy

= π

(
y2

2
− y

)∣∣∣∣5
1

= π

[(
25

2
− 5

)
−
(

1

2
− 1

)]
= 8π
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3(b) Rotate first quadrant portion of region bdd by y = x2 and y = 4
about y -axis.
If you rotate the whole region, only need to rotate by 180◦ to form a
solid with circular cross-sections. Rotating by 360◦ would overlap
what you’ve already formed – you’d double the volume. Also, it’s
harder, because you’d have to do two functions. So ... you’d work
harder to get the wrong answer.
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Circular cross-sections are perp to y -axis ⇒ r = x = g(y) =
√

y ,
from y = 0 to y = 4.
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3(b) (continued)

Volume =

∫ 4

0
A(y) dy

= π

∫ 4

0
radius2 dy

= π

∫ 4

0
(
√

y)2 dy

= π

∫ 4

0
y dy

= π(
y2

2
) from 0 to 4

= π[(
16

2
)− (0)]

= π(8)
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4. The sphere of radius r .
Form sphere of radius r by rotating upper half of a circle of radius r
about x-axis. In fact, just rotate upper right quarter-circle, and
multiply by 2.
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A circle of radius r , centered at the origin, has equation x2 + y2 = r2,
so the upper half has equation y =

√
r2 − x2.
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4. (continued)

V = 2

[
π

∫ r

0
(
√

r2 − x2)2 dx

]
= 2π

∫ r

0
r2 − x2 dx

= 2πr2x − x3

3

∣∣∣∣r
0

= 2π[(r3 − r3

3
)− (0)]

=
4πr3

3
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