In Exercises 1 and 2, suppose that $a(x)$ is continuous, positive, and decreasing for all $x \geq 1$ and that $a_{k}=a(k)$ for all integers $k \geq 1$.

1. Rank the values $\int_{n}^{\infty} a(x) d x, \sum_{k=n+1}^{\infty} a_{k}$, and $\int_{n+1}^{\infty} a(x) d x$ in increasing order. Hint: Draw a carefully annotated picture
2. Draw a carefully annotated picture that shows that if $a(x)$ is continuous, non-negative, and decreasing:
(a) $\int_{1}^{n+1} a(x) d x \leq \sum_{k=1}^{n} a_{k}$
(b) $\sum_{k=2}^{n} a_{k} \leq \int_{1}^{n} a(x) d x$
(c) $\sum_{k=n+1}^{\infty} a_{k} \leq a_{n+1}+\int_{n+1}^{\infty} a(x) d x$

In Exercises 3 and 4, use the integral test to find upper and lower bounds on the limit of the series.
3. $\sum_{k=1}^{\infty} \frac{1}{k \sqrt{k}}$
4. $\sum_{k=1}^{\infty} j e^{-j}$

In Exercises 5 and 6, determine whether the series converges or diverges. If the series converges, find a number N such that the partial sum S_{N} approximates the sum of the series within 0.001 . If the series diverges, find a number N such that $S_{N} \geq 1000$.
5. $\sum_{n=1}^{\infty} \frac{\arctan (n)}{1+n^{2}}$
6. $\sum_{k=2}^{\infty} \frac{1}{k \ln (k)}$

