In Exercises 1 and 2, show that the series converges. Then find upper and lower bounds on the limit of the series.

1. $\sum_{m=1}^{\infty} \frac{1}{m \sqrt{1+m^{2}}}$
2. $\sum_{k=1}^{\infty} \frac{k}{\left(k^{2}+1\right)^{2}}$

In Exercises 3-5, determine whether the series converges or diverges. If the series converges, find a number N such that the partial sum S_{N} approximates the sum of the series within 0.001. If the series diverges, find a number N such that $S_{N} \geq 1000$.
3. $\sum_{k=0}^{\infty} \frac{1}{k^{2}+3}$
4. $\sum_{k=0}^{\infty} \frac{1}{2+\cos (k)}$
5. $\sum_{m=2}^{\infty} \frac{\ln (m)}{m^{3}}$

