Daily WeBWorK, problem 2

Calculate the volume of the solid under the graph of the function f(x, y) = xy over the triangular region $x + 2y \le 6$, $x \ge 0$, $y \ge 0$.

Signed Volume =
$$\iint_R xy \ dA$$
.

Need to understand the region triangular region R to rewrite as an iterated integral.

 $x + 2y \le 6 \Rightarrow y \le -\frac{x}{2} + 3 \Rightarrow R$ consists of region below $y = -\frac{x}{2} + 3$, above y = 0, to the right of x = 0:

Math 104-Calc 2 (Sklensky)

Leftmost-x-value: x = 0Rightmost-*x*-value: x = 6 $\Rightarrow \iint_{D} xy \ dA = \int_{0}^{6} \int_{C}^{D} xy \ dy \ dx$ As x goes from 0 to 6: bottom-most curve: y = 0topmost-curve: $y = -\frac{x}{2} + 3$ $\Rightarrow \iint_{n-\text{Class-Work}} xy \ dA = \int_{0}^{6} \int_{0}^{3-x/2} xy \ dy = dx_{0,0}$

Daily WeBWorK, problem 2

Calculate the volume of the solid under the graph of the function f(x, y) = xy over the triangular region $x + 2y \le 6$, $x \ge 0$, $y \ge 0$.

Signed Volume =
$$\iint_R xy \ dA$$
.

Need to understand the region triangular region R to rewrite as an iterated integral.

With polar coordinates, some new graphs are a snap!

Each of these is just the graph of a single simple function.

Math 104-Calc 2 (Sklensky)

In-Class Work

December 4, 2013 3 / 12

• • • • • • • • • • • •

Identifying Points in the Plane

Math 104-Calc 2 (Sklensky)

In-Class Work

December 4, 2013 4 / 12

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Rectangular Coordinates

Math 104-Calc 2 (Sklensky)

In-Class Work

December 4, 2013 5 / 12

In Class Work

- 1. Plot the point $(-2, 4\pi/3)$ in polar coordinates; verify by converting to rectangular coordinates.
- 2. Convert the rectangular point (-3, -5) to polar coordinates.
- 3. Sketch the graph of $\theta = 3\pi/4$ (by plotting points)
- 4. Sketch the graph of r = 4 (by plotting points)
- 5. Sketch the graph of $r = \sin(4\theta)$ (by plotting points)

Math 104-Calc 2 (Sklensky)

In-Class Work

1. Plot the point $(-2, 4\pi/3)$ in polar coordinates; verify by converting to rectangular coordinates.

I will just show verifying:

$$x = r\cos(\theta) = -2\cos\left(\frac{4\pi}{3}\right) = -2 \cdot -\frac{1}{2} = 1$$
$$y = r\sin(\theta) = -2\sin\left(\frac{4\pi}{3}\right) = -2 \cdot -\frac{\sqrt{3}}{2} = \sqrt{3}$$

Thus the polar point $(-2, 4\pi/3)$ is equivalent to the rectangular point $(1, \sqrt(3))$.

Math 104-Calc 2 (Sklensky)

In-Class Work

December 4, 2013 8 / 12

2. Convert the rectangular point (-3, -5) to polar coordinates.

$$r = \sqrt{x^2 + y^2} = \sqrt{9 + 25} = \sqrt{34}$$

$$\tan(\theta) = \frac{y}{x} = \frac{-5}{-3} = \frac{5}{3}$$

The point (-3, -5) is in the third quadrant, so add π to whatever the calculator gives for the inverse tangent of $\frac{5}{3}$:

$$heta = \pi + \arctan\left(rac{5}{3}
ight) pprox pi + 1.0304$$

Thus the rectangular point (-3, -5) is (roughly) equivalent to the polar point $(\sqrt{34}, \pi + 1.0304)$.

Math 104-Calc 2 (Sklensky)

December 4, 2013 9 / 12

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

3. Sketch the graph of $\theta = 3\pi/4$.

Because our angle is fixed but r (the distance from the origin) can be anything, this will just be a line radiating out from the origin at an angle of $3\pi/4$ in both directions.

4. Sketch the graph of r = 4.

This will be a circle of radius 4. θ must go from 0 to 2π to sketch out the entire circle.

- 3

< ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5. Sketch the graph of $r = \sin(4\theta)$. To sketch the graph, plot points.

θ	$r(\theta)$
0	0
$\pi/8$	1
$\pi/4$	0
$3\pi/8$	-1
$\pi/2$	0
$5\pi/8$	1
$3\pi/4$	0
$7\pi/8$	-1
π	0
.:	:

For graph, see end of today's Maple file

Math 104-Calc 2 (Sklensky)

December 4, 2013 12 / 12

(日) (四) (三) (三) (三)