Where We've Been: Polar Coordinates

Any point in the plane can be specified by its distance r from the origin (r may be positive or negative) and the angle θ that the line connecting the point to the origin forms with the positive x-axis.

Thus the point with polar coordinates $\left(4, \frac{5\pi}{6}\right)$ has rectangular coordinates $\left(-2\sqrt{3}, 2\right)$.

Math 104-Calc 2 (Sklensky)

December 5, 2013 1 / 7

Polar functions: Plotting points

We can graph a polar function simply by plotting points.

Graph the function $r = 4\cos(\theta)$.

θ	r=f(heta)	(f(heta), heta)	$\frac{1}{2}$
0	$4\cos(0) = 4$	(4,0)	$\frac{3\pi}{4}$ $\frac{\pi}{4}$
$\frac{\pi}{4}$	$4\cos\left(\frac{\pi}{4}\right) = 2\sqrt{2}$	$\left(2\sqrt{2},\frac{\pi}{4}\right)$	
$\frac{\pi}{2}$	$4\cos\left(rac{\pi}{2} ight)=0$	$\left(0,\frac{\pi}{2}\right)$	
$\frac{3\pi}{4}$	$4\cos\left(\frac{3\pi}{4}\right) = -2\sqrt{2}$	$\left(-2\sqrt{2},\frac{3\pi}{4}\right)$	
π	$4\cos(\pi) = -4$	$(-4,\pi)$	
$\frac{5\pi}{4}$	$4\cos\left(\frac{5\pi}{4}\right) = -2\sqrt{2}$	$\left(-2\sqrt{2},\frac{5\pi}{4}\right)$	
$\frac{3\pi}{2}$	$4\cos\left(\frac{3\pi}{2}\right) = 0$	$\left(0,\frac{3\pi}{2}\right)$	$\frac{3\pi}{4}$ $\frac{7\pi}{4}$
$\frac{7\pi}{4}$	$4\cos\left(\frac{7\pi}{4}\right) = 2\sqrt{2}$	$\left(2\sqrt{2},\frac{7\pi}{4}\right)$	$\frac{3\pi}{2}$
2π	$4\cos(2\pi) = 4$	$(4, 2\pi)$	A circle is traced out for 0 \leq
			$ heta \leq \pi$ (B) (E) (E) (E) (O)

Math 104-Calc 2 (Sklensky)

In-Class Work

December 5, 2013 2 / 7

π

In Class Work

Sketch the graphs of the following polar equations (usually, you'll do this by plotting points).

1.
$$\theta = 3\pi/4$$

2. *r* = 4

3. $r = \sin(4\theta)$

 $4. \ r = 2\cos(3\theta) + 3$

Solutions

1. Sketch the graph of $\theta = 3\pi/4$.

Because our angle is fixed but r (the distance from the origin) can be anything, this will just be a line radiating out from the origin at an angle of $3\pi/4$ in both directions.

Solutions

2. Sketch the graph of r = 4.

This will be a circle of radius 4. θ must go from 0 to 2π to sketch out the entire circle.

・ロン ・四 ・ ・ ヨン ・ ヨン

Solutions

3. Sketch the graph of $r = \sin(4\theta)$. To sketch the graph, plot points.

θ	$r(\theta)$
0	0
$\pi/8$	1
$\pi/4$	0
$3\pi/8$	-1
$\pi/2$	0
$5\pi/8$	1
$3\pi/4$	0
$7\pi/8$	-1
π	0
.:	÷

For graph, see end of the Maple file from the last class

Math 104-Calc 2 (Sklensky)

In Class Work

4. Sketch the graph of $r = 2\cos(3\theta) + 3$. Again, plot points:

		π	
θ	$r(\theta)$	2	
0	5	<u>3 π</u>	π
$\pi/6$	3	4	$\overline{4}$
$2\pi/6$	1		
$3\pi/6$	3		
$4\pi/6$	5		
$5\pi/6$	3	π	0
$6\pi/6$	1		
$7\pi/6$	3		
$8\pi/6$	5		
$9\pi/6$	3	5 π	γ_{π}
$10\pi/6$	1	4	4
$11\pi/6$	3	3 π	
			□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● 今 ○
Math 104-Calc 2 (Sklensky)		y) In-Class Work	December 5, 2013 7

7