Motivating the Chain Rule

Suppose

- $f(x,y) = x \cos(xy)$ models surface of a mountain above the point (x,y)
- $x(\theta) = 2\cos(\theta)$, $y(\theta) = 2\sin(\theta)$ models a circular path along the mountain

Then $f(x(\theta), y(\theta))$ gives the altitude of any point on that circular path.

Question: How is the elevation changing at $\theta = \frac{\pi}{2}$?

November 13, 2013 1 / 4

In Class Work

- 1. Draw a tree diagram to figure out the chain rule for composite functions of the form z = g(u, v) = f(x(r, s), y(r, s, t)), where r, s, and t are all functions of u and v.
- 2. Suppose that w = f(x, y, z) and that x, y, and z are all functions of r, s, and t.
 - (a) How many partial derivatives do you need to calculate, in order to determine $\frac{\partial w}{\partial t}$?
 - (b) What is the expression for $\frac{\partial w}{\partial t}$?

2 / 4

Solutions

1. Draw a tree diagram to figure out the chain rule for composite functions of the form z = g(u, v) = f(x(r, s), y(r, s, t)), where r, s, and t are all functions of u and v.

3 / 4

Solutions

2. How many partial derivatives do you need to calculate, in order to determine $\frac{\partial w}{\partial t}$?

Just to calculate this one partial using the chain rule, I need to calculate six different partial derivatives.

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t}$$