Goals:

Be able to :

- 1. Determine whether a series $\sum a_k$ converges or diverges.
 - Geometric Series?
 - Divergence Test?
 - Integral Test?
 - Comparison Test?
- 2. If it converges, find the limit (that is, the value of the series) exactly, if possible.
 - Geometric series only (so far)
- 3. If it converges but we can't find the limit exactly, be able to approximate it.

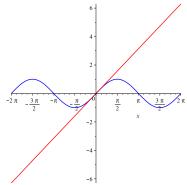
Math 104-Calculus 2 (Sklensky)

In-Class Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Motivation for Taylor Series:

Example:



Let $f(x) = \sin(x)$. Then $f'(x) = \cos(x)$. Line tangent to f(x) at $x_0 = 0$:

goes thru the point $(0, \sin(0)) = (0, 0)$

• has slope
$$m = \cos(0) = 1$$

 $P_1(x) = 1(x-1) + 0$ $\Rightarrow P_1(x) = x$

In general: if f(x) diff'ble at x_0 and $P_1(x)$ is line tangent to $f(x) x_0$,

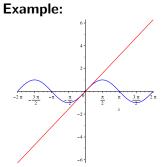
Tangent line P_1 is the only line thru $(x_0, f(x_0))$ with slope $f'(x_0)$. That is, the tangent line is **the** line $P_1(x)$ with

> $P_1(x_0) = f(x_0)$ and $P'_1(x_0) = f'(x_0)$ October 16, 2013 2 / 11

Math 104-Calculus 2 (Sklensky)

In-Class Work

Motivation for Taylor Series:



The tangent line at $x = x_0$, $P_1(x)$, is **the** line with

 $P_1(x_0) = f(x_0)$ and $P'_1(x_0) = f'(x_0)$

Because the tangent line *agrees with* f(x) at x_0 , and the slope of the tangent line *agrees with* the slope of f(x) at x_0 , the tangent line does a good job of approximating f(x) near x_0 .

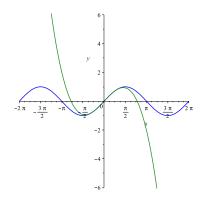
Note: The tangent line and the function are equal **at** x_0 ; **near** x_0 , we can use the tangent line to estimate the function.

Math 104-Calculus 2 (Sklensky)

October 16, 2013 3 / 11

Motivation for Taylor Series

Example:



Let
$$f(x) = \sin(x)$$
.
Let $P_3(x) = -\frac{x^3}{6} + x$
 $\Rightarrow P'_3(x) = -\frac{x^2}{2} + 1$
 $\Rightarrow P''_3(x) = -x$
 $\Rightarrow P'''_3(x) = -1$
Thus (check!) $P_3(x)$ is the cubic with

$$P_{3}(0) = 0 = f(0)$$

$$P'_{3}(0) = 1 = f'(0)$$

$$P''_{3}(0) = 0 = f''(0)$$

$$P'''_{3}(0) = -1 = f'''(0)$$

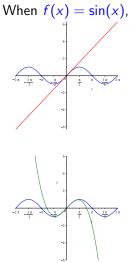
 $P_3(x)$ does an even better job at approximating f(x) near x_0

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 16, 2013 4 / 11

- 2



1st degree poly $P_1(x) = x$ has

 $P_1(0) = f(0)$ $P'_1(0) = f'(0)$

3rd degree poly $P_3(x) = -\frac{x^3}{6} + x$ has

 $P_{3}(0) = f(0)$ $P'_{3}(0) = f'(0)$ $P''_{3}(0) = f''(0)$ $P'''_{3}(0) = f'''(0)$

What would make a 7th degree poly approximate sin(x) well near x = 0

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 16, 2013 5 / 11

Question: What would make a 7th degree poly approximate sin(x) well near x = 0?

Finding a 7th degree polynomial $P_7(x)$ that has

$$P_{7}(0) = f(0)$$

$$P'_{7}(0) = f'(0)$$

$$\vdots$$

$$P^{(6)}_{7}(0) = f^{(6)}(0)$$

$$P^{(7)}_{7}(0) = f^{7}(0)$$

Math 104-Calculus 2 (Sklensky)

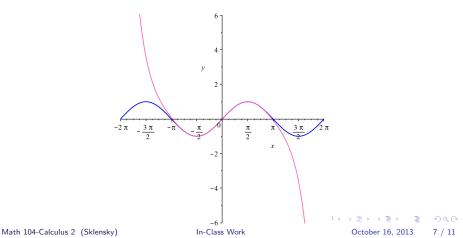
In-Class Work

October 16, 2013 6 / 11

Using techniques you'll be learning soon, we can find that

$$P_7(x) = -\frac{x^7}{7!} + \frac{x^5}{5!} - \frac{x^3}{3!} + x$$

is such a 7th degree polynomial.

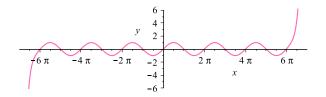


We can use these Taylor Polynomial approximations to approximate

- The value of a more complicated function at a particular point
- The derivative of a more complicated function at a point
- The integral of a more complicated function on an interval

The more derivatives at x = 0 we match (the higher *n* is), the better $P_n(x)$ does at approximating sin(x) away from x = 0.

The following is a graph of $P_{49}(x)$:



Question: What would make the idea of Taylor polynomials even more accurate?

Math 104-Calculus 2 (Sklensky)

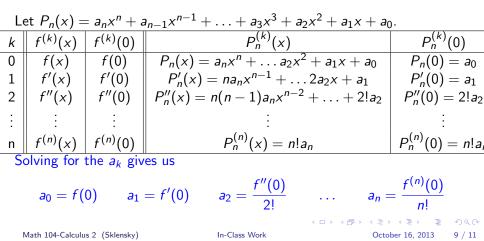
In-Class Work

October 16, 2013 8 / 11

*n*th degree Taylor Polynomial for f(x) near $x_0 = 0$:

Let f(x) be an arbitrary function, differentiable at x_0 . Create an *n*th degree polynomial P_n so that

 $P_n(0) = f(0)$ $P'_n(0) = f'(0)$ $P''_n(0) = f''(0)$... $P_n^{(n)}(0) = f^{(n)}(0)$



In Class Work

Find the 6th degree Taylor Polynomial for cos(x) based at x = 0, and use it to approximate cos(0.1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Solutions:

Find the 6th degree Taylor Polynomial for cos(x) based at x = 0, and use it to approximate cos(0.1).

$$P_6(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

$$\cos(0.1) \approx P_6(0.1) = 1 - \frac{0.1^2}{2!} + \frac{0.1^4}{4!} - \frac{0.1^6}{6!} = 0.9950041653$$
Compare this to what your calculator gives for $\cos(0.1)$:

 $\cos(0.1) \approx 0.9950041653$

That's an extremely good approximation!

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 16, 2013 11 / 11

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙