Daily WeBWorK Problem 3

Compute $P_2(x)$ for $y = e^x$, based at $x_0 = 0.8$. Compute the error incurred by using P_2 to approximate e^x at x = 0.7.

k	$f^{(k)}(x)$	$a_k = \frac{f^{(k)}(0.8)}{k!}$
0	$f(x) = e^x$	$a_0 = \frac{e^{0.8}}{0!} = e^{0.8}$
1	$f'(x) = e^x$	$a_1 = \frac{e^{0.8}}{1!} = e^{0.8}$
2	$f''(x)=e^x$	$a_2 = \frac{e^{0.8}}{2!} = \frac{e^{0.8}}{2}$

$$\Rightarrow P_{2}(x) = e^{0.8} + e^{0.8}(x - 0.8) + \frac{e^{0.8}}{2}(x - 0.8)^{2}$$

$$\Rightarrow e^{0.7} \approx P_{2}(0.7) = e^{0.8}\left(1 + (0.7 - 0.8) + \frac{1}{2}(0.7 - 0.8)^{2}\right)$$

$$\approx 2.014114540$$

$$e^{0.7} \stackrel{\text{Maple}}{=} 2.013752707 \Rightarrow \text{Error} = \left|e^{0.7} - P_{2}(0.7)\right| \approx 0.000363$$

Taylor Series We've Seen

$$cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$\ln(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}(x-1)^k}{k} = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} + \cdots$$

$$\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + x^4 - x^5 + \cdots$$

In Class Work

- 1. Find the Taylor Series for e^x based at x = 0 (that is, find the Maclaurin Series for e^x).
- 2. Use known Taylor Series to find the Taylor series for
 - (a) $\frac{1}{1+x^2}$
 - (b) $\arctan(x)$
- 3. Find a series that gives $\int_0^1 e^{-x^2}$ exactly.

Taylor Series You Should Know

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$\ln(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}(x-1)^k}{k} = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} + \cdots$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + x^4 + x^5 + \dots$$

►
$$\arctan(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^{11}}{11} + \cdots$$

Math 104-Calculus 2 (Sklensky) In-Class Work October 21, 2013 4 / 8

Notation and Vocabulary for \mathbb{R}^n :

- ▶ One dimension = real-number line = \mathbb{R} .
- ▶ 2-dimensional space = plane = \mathbb{R}^2 . We'll call it "2-space" sometimes.
- ► 3-dimensional space= space=R³. We'll call it "3-space".
- ▶ In general, *n* dimensions= \mathbb{R}^n = *n*-space.
- 3-dimensional space is the highest number of dimensions we can readily graph.

Solutions

1. Find the Taylor Series for e^x about c = 0

Tilla the raylor belies for e a			
	k	$f^{(k)}(x)$	$a_k = \frac{f^{(k)}(0)}{k!}$
	0	e ^x	$a_0 = \frac{e^0}{0!} = 1$
	1	e ^x	$a_1=rac{e^0}{1!}=1$
	2	e ^x	$a_2 = \frac{e^0}{2!} = \frac{1}{2!}$
	3	e ^x	$a_2 = \frac{e^0}{2!} = \frac{1}{2!}$ $a_3 = \frac{e^0}{3!} = \frac{1}{3!}$
	:	:	:
	k	e ^x	$a_k = \frac{e^0}{k!} = \frac{1}{k!}$

The Taylor Series for e^x is

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$= \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

Solutions

2(a) Find the Taylor Series for
$$\frac{1}{1+x^2}$$
:

Since the Taylor Series for $\frac{1}{1+x}$ based at x=0 is $\sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + x^4 - x^5 + \cdots$, the Taylor Series for $\frac{1}{1+x^2}$ based at x=0 is

$$\sum_{k=0}^{\infty} (-1)^{k} (x^{2})^{k} = 1 - x^{2} + x^{4} - x^{6} + x^{8} - x^{10} + \cdots$$

2(b) Find the Taylor Series for arctan(x)

Using the result from 2(a):

$$\arctan(x) = \int \frac{1}{1+x^2} dx = \int \left(1-x^2+x^4-x^6+x^8-x^{10}+\cdots\right) dx$$

 $= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^{11}}{11} + \cdots + \frac{x^{11}}{9} + \frac{x^{11}}{11} + \cdots + \frac{x^{11}}{9} + \frac{x^{11}}{11} + \cdots + \frac{x^{11}}{9} + \frac{x^{11}}{$

Solutions

3. Find a series that gives $\int_{0}^{1} e^{-x^2} dx$ exactly.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\Rightarrow e^{-x^{2}} = 1 - x^{2} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \cdots$$

$$\Rightarrow \int_{0}^{1} e^{-x^{2}} dx = \int_{0}^{1} \left(1 - x^{2} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \cdots \right) dx$$

$$= \left[x - \frac{x^{3}}{3} + \frac{x^{5}}{5 \cdot 2!} - \frac{x^{7}}{7 \cdot 4!} + \cdots \right]_{0}^{1}$$

$$= 1 - \frac{1}{3} + \frac{1}{5 \cdot 2!} - \frac{1}{7 \cdot 4!} + \cdots$$

$$= \sum_{k=0}^{\infty} (-1)^{k} \frac{1}{(2k+1) \cdot k!}$$