(a)
$$6x^2 + 6y^2 - z = 0$$

- x-intercept=y-intercept=z-intercept: (0,0,0)
- xy-trace: $6x^2 + 6y^2 = 0 \Rightarrow x = y = 0 \Rightarrow (0,0,0)$
- xz-trace: $z = 6x^2 \Rightarrow$ parabola opening along z-axis
- yz-trace: $z = 6y^2 \Rightarrow$ parabola opening along z-axis
 - ► 2 parabolic traces ⇒ paraboloid
- ▶ We now have a sense of something opening up around the z-axis, but in what shape?
 - ▶ What are the cross-sections parallel to the *xy*-plane?
 - Section in z = 1: $6x^2 + 6y^2 = 1 \Rightarrow$ circle
 - Section in z = 2: $6x^2 + 6y^2 = 2 \Rightarrow$ circle
 - In any plane z = k with k > 0, circle
 - ▶ No sections below the xy-plane

Circular sections in third direction ⇒ circular paraboloid

Since it opens around the z-axis, that is its axis of symmetry

(b)
$$-9x^2 + 6y^2 - z^2 = 0$$

- x-intercept=y-intercept=z-intercept: (0,0,0)
- xy-trace: $-9x^2 + 6y^2 = 0 \Rightarrow 9x^2 = 6y^2 \Rightarrow y = \pm \sqrt{\frac{9}{6}}x \Rightarrow 2$ lines
- xz-trace: $z^2 = -9x^2 \Rightarrow NO$ trace in the xz-plane
- yz-trace: $z^2 = 6y^2 \Rightarrow z = \pm \sqrt{6}y \Rightarrow 2$ lines
 - ► 2 pairs of crossing lines ⇒ maybe a cone?
- Since no trace in xz-plane, no idea what's going on parallel to the "side wall".
 - ▶ What are the cross-sections parallel to the xz-plane?
 - ► Section in $y = \pm 1$: $-9x^2 + 6 z^2 = 0 \Rightarrow 9x^2 + z^2 = 6 \Rightarrow$ ellipses
 - ► Section in $y = \pm 2$: $-9x^2 + 24 z^2 = 0 \Rightarrow 9x^2 + z^2 = 24 \Rightarrow$ ellipses
 - ▶ In any plane $y = \pm k$: ellipses

Elliptical sections in third direction \Rightarrow elliptical cone

Since it has elliptic cross-sections parallel to the xzplane, it is symmetric around the y-axis

(c)
$$6y^2 - 6x^2 - 5z^2 + 1 = 0 \Rightarrow 6x^2 - 6y^2 + 5z^2 = 1$$

- x-intercepts: $(\pm\sqrt{\frac{1}{6}},0,0)$, y-intercept: none, z-intercept: $(0,0,\pm\sqrt{\frac{1}{5}})$
- xy-trace: $6x^2 6y^2 = 1 \Rightarrow$ hyperbola opening along x, not touching y
- xz-trace: $6x^2 + 5z^2 = 1 \Rightarrow$ ellipse
- ▶ yz-trace: $5z^2 6y^2 = 1 \Rightarrow$ hyperbola opening along z, not touching y
 - ► 2 hyperbolas ⇒ hyperboloid
- ► Since it has a trace in the xz-plane, it's a hyperboloid of 1 sheet. It is symmetric around the axis it doesn't touch the y-axis.

(d)
$$\Rightarrow -5x^2 - 9y^2 + z^2 = 1$$

- \triangleright x-intercepts: none, y-intercept: none, z-intercepts: $(0,0,\pm 1)$
- \rightarrow xv-trace: $-5x^2 9v^2 = 1 \Rightarrow$ none
- xz-trace: $z^2 5x^2 = 1 \Rightarrow$ hyperbola opening along z, not touching x
- yz-trace: $z^2 9y^2 = 1 \Rightarrow$ hyperbola opening along z, not touching y
 - ► 2 hyperbolas ⇒ hyperboloid
- ► Since it **does not** have a trace in the xy-plane, it's a hyperboloid of 2 sheet.

It is symmetric around the axis it **does** touch – the z-axis.

(e)
$$\Rightarrow 9y^2 + 9z^2 = 1$$

- ightharpoonup x-intercepts: $(0,\pm \frac{1}{3},0)$, z-intercepts: $(0,0,\pm \frac{1}{3})$
- xy-trace: $9y^2 = 1 \Rightarrow (0, \pm \frac{1}{3}, 0)$
- *xz*-trace: $9z^2 = 1 \Rightarrow (0, 0, \pm \frac{1}{3})$
- yz-trace: $9y^2 + 9z^2 = 1 \Rightarrow \text{circle}$
- ▶ Because y and z are connected but x is free, this is a cylinder extending infinitely in the x direction (and hence x is the axis of symmetry).
- Because all cross-sections parallel to the yz-plane are circles, it is a circular cylinder.

5 / 5

Functions of Two Variables

Example: Below are the graphs of four surfaces. Two of them are the graphs of $f_1(x, y) = [(x^2 + y^2) - 2]^3$ and $f_2(x, y) = y^2 \sin(x)$. Which two?

