Where We're Going:

Continue Our Quick Review of the Basics of Integration

- ▶ The Fundamental Theorem of Calculus
- Antidifferentiation
- ► Signed Area; Area btwn 2 curves

The signed area between $3x^5 + \sin(x)$ and the x-axis from x = 1 to x = 2

2 / 12

The Fundamental Theorem of Calculus

If f is continuous on [a, b] and F is any antiderivative of f, then

$$\int_a^b f(x) \ dx = F(x) \Big|_a^b = F(b) - F(a)$$

Question:

- ▶ If a function f(x) is continuous, must it have an antiderivative?
- ▶ If yes: Must there be a *formula* for the antiderivative?

Question:

- ▶ If a function f(x) is continuous, must it have an antiderivative?
- ▶ If yes: Must there be a formula for the antiderivative?

The Second Fundamental Theorem of Calculus If f is continuous on [a,b] and we define $A_f(x)=\int_a^x f(t)\ dt$ for all $x\in[a,b]$, then

- (a) A_f is continuous on [a, b] and differentiable on (a, b)
- (b) A_f is an antiderivative of f; that is, $A'_f(x) = f(x)$.

Note: The text uses the notation F(x): I prefer A_f as it reminds us that this is the area from a to x under f

◆ロト ◆昼 ▶ ◆ 豊 ト ◆ 豊 ・ 夕 Q で

Questions:

What are definite integrals? Indefinite integrals?

What are the differences between a definite integral and an indefinite integral? What does each one represent?

Definite Integrals vs Indefinite Integrals

- ► The definite integral $\int_a^b f(x) dx$ is defined to be the signed area between the curve f and the x-axis from x = a to x = b.
- ► The FTC (parts 1 and 2) tell us of the connection between this signed area and antiderivatives.
- ▶ Because hitherto there has been no good notation for antiderivatives, we take advantage of this connection to create some:

We use $\int f(x) dx$ to represent the family of all antiderivatives of f, and we call $\int f(x) dx$ the indefinite integral

One challenge with antidifferentiation

Consider the two products xe^{x^2} and xe^x .

- (a) Which differentiation rule would you use to verify that an antiderivative of xe^{x^2} is $\frac{1}{2}e^{x^2}$?
- (b) Which differentiation rule would you use to verify that an antiderivative of xe^x is $e^x(x-1)$?

Why do your answers to (a) and (b) make it unlikely that we will find a general product rule for antidifferentiation?

In Class Work

- 1. Find two antiderivatives for $p(x) = 3x^5 + 7x^4 \frac{3}{x} + \frac{11}{x^2}$ (by hand).
- 2. Find the function v(t) satisfying the conditions that $v'(t) = 2e^t 3\cos(3t)$ and v(0) = -3.
- 3. Find the area between $f(x) = x^2$ and $g(x) = 8 x^2$. [Note that I am asking for area, which should be positive, not signed area, which can be positive or negative.]
- 4. Suppose that $f(x) = x^2 3e^{x^2} + 4$ and $A_f(x) = \int_{-5}^x f(t) dt$.
 - (a) Is the graph of f(x) increasing or decreasing at x = -2?
 - (b) Is the graph of f(x) concave up or concave down at x = -2?
 - (c) Is the graph of $A_f(x)$ increasing or decreasing at x = -2?
 - (d) Is the graph of $A_f(x)$ concave up or concave down at x = -2?

Solutions

1. Find two antiderivative for $p(x) = 3x^5 + 7x^4 - \frac{3}{x} + \frac{11}{x^2}$ by hand.

One antiderivative:
$$P(x) = \frac{3}{6}x^6 + \frac{7}{5}x^5 - 3\ln|x| - \frac{11}{x}$$

No need for +C. Creates family of all antiderivatives.

Adding any constant to P(x) will give me a second antiderivative. For example, a second antiderivative is

$$Q(x) = \frac{3}{6}x^6 + \frac{7}{5}x^5 - 3\ln|x| - \frac{11}{x} + e.$$

Solutions

2. Find the function v(t) satisfying the conditions that $v'(t) = 2e^t - 3\cos(3t)$ and v(0) = -3.

Need to find: Specific antiderivative of v'(t) that has v(0) = 3.

First, find any antiderivative:

- ▶ If you remember integration by substitution, use it.
- ▶ If you don't, guess, check and modify until you find an antiderivative. (We'll review substitution one day next week)

The family of antiderivatives is

$$v(t) = 2e^t - \sin(3t) + C$$

Need to find: The value of C that makes v(0) = -3:

$$-3 = v(0) = 2e^{0} - \sin(0) + C = 2 + C \Longrightarrow C = -5.$$

Thus
$$v(t) = 2e^t - \sin(3t) - 5$$
.

Solutions:

3. Find the area between $f(x) = x^2$ and $g(x) = 8 - x^2$.

By solving $x^2 = 8 - x^2$ for x, we find that the intersection points are $x = \pm 2$.

Area = signed area under
$$g(x)$$
 - signed area under $f(x)$
= $\int_{-2}^{2} (8 - x^2) - x^2 dx = \int_{-2}^{2} 8 - 2x^2 dx$
= $8x - \frac{2}{3}x^3\Big|_{-2}^{2} = \left(16 - \frac{16}{3}\right) - \left(-16 + \frac{16}{3}\right)$
= $32 - \frac{32}{3}$

Solutions:

- 4. Suppose that $f(x) = x^2 3e^{x^2} + 4$, and $A_f(x) = \int_{-5}^{x} f(t) dt$.
 - (a) Is the graph of f(x) increasing or decreasing at x = -2?

$$f'(x) = 2x - 6xe^{x^2} \Rightarrow f'(-2) = -4 + 12e^4 > 0 \Rightarrow f \text{ is } \uparrow \text{ at } x = -2$$
(b) Is the graph of $f(x)$ concave up or concave down at $x = -2$?

- (b) is the graph of f(x) concave up or concave down at x = -2? $f''(x) = 2 12x^2e^{x^2} 6e^{x^2} \Rightarrow f''(-2) = 2 (48 + 6)e^4 < 0.$ f is concave down at x = -2.
- (c) Is the graph of $A_f(x)$ increasing or decreasing at x = -2?

Since A_f is an antiderivative of f, A'_f is f.

$$A'_f(x) = f(x) = x^2 - 3e^{x^2} + 4 \Rightarrow A'_f(-2) = 4 - 3e^4 + 4 < 0.$$

 A_f is decreasing at x = -2.

(d) Is the graph of $A_f(x)$ concave up or concave down at x = -2? Since $A''_f(x) = f'(x)$,

$$A''_f(-2) = f'(-2) = -4 + 12e^4 > 0 \Rightarrow A_f$$
 concave up at $x = -2$