WeBWorK #2

Write out the sigma notation for the right sum with n=4 that approximates the signed area between $f(x)=\sqrt{x+1}$ and the x-axis on [2,3]. Do this in such a way that the only variable is k. (Go from k=1 to k=4).

That is, Find
$$R_4$$
 for $\int_2^3 \sqrt{x+1} \ dx$.

$$a = 2, \ b = 3 \Rightarrow \Delta x = \frac{b-a}{n} = \frac{3-2}{4} = \frac{1}{4}$$

Thus the partition of [2,3] is
$$\left\{2, \underbrace{2 + \frac{1}{4}, 2 + \frac{1}{2}, 2 + \frac{3}{4}, 3}\right\}$$
Right endpoints

Conclusions so far:

- ► The width of each rectangle = $\Delta x = \frac{1}{4}$
- ▶ The heights of each rectangle = f(right endpoints)

$$R_4 = \frac{1}{4} \left[f\left(2 + \frac{1}{4}\right) + f\left(2 + \frac{1}{2}\right) + f\left(2 + \frac{3}{4}\right) + f\left(3\right) \right]$$

WeBWorK #2

Find R_4 for $\int_2^3 \sqrt{x+1} \ dx$.

$$R_4 = \frac{1}{4} \left[\underbrace{f\left(2 + \frac{1}{4}\right)}_{k=1} + \underbrace{f\left(2 + \frac{1}{2}\right)}_{k=2} + \underbrace{f\left(2 + \frac{3}{4}\right)}_{k=3} + \underbrace{f\left(3\right)}_{k=4} \right]$$

Can see that for each k from k=1 to k=4, the inside of the function is $2+\frac{k}{4}$. Thus

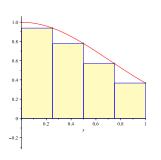
$$R_4 = \sum_{k=1}^4 \frac{1}{4} f\left(2 + \frac{k}{4}\right)$$

But we need to say what f does to each input!

$$R_4 = \sum_{k=1}^4 \frac{1}{4} \sqrt{(2 + \frac{k}{4}) + 1} = \sum_{k=1}^4 \frac{1}{4} \sqrt{3 + \frac{k}{4}}$$

Question about approximations:

Last time, looked at
$$\mathcal{I} = \int_0^{1/2} e^{-x^2} dx$$
. Found:



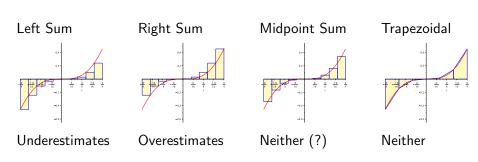
Because f is decreasing, R_4 is an underestimate

Also found

$$\mathcal{I} \approx R_4 \\ \approx \frac{1}{8} \cdot e^{-(1/8)^2} + \frac{1}{8} \cdot e^{-(1/4)^2} \\ + \frac{1}{8} \cdot e^{-(3/8)^2} + \frac{1}{8} \cdot e^{-(1/2)^2} \\ \approx 0.4464406673$$

Question: Can we find the error in using R_4 to approximate \mathcal{I} exactly?

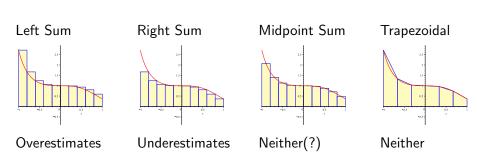
Example: If a function f is always increasing on [a,b] (Monotonic)



If f is increasing on [a, b], L_n will underestimate and R_n will over-estimate.

$$L_n \leq \mathcal{I} \leq R_n$$
.

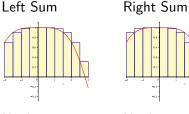
Example: If f is always decreasing on [a, b] (Monotonic)

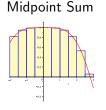


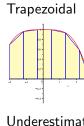
If f is decreasing, L_n will overestimate and R_n will under-estimate.

$$R_n \leq \mathcal{I} \leq L_n$$
.

Example: If f is always concave down on [a, b]:







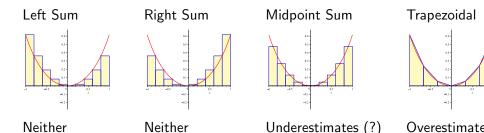
Neither Neither

Whenever f is concave down on [a, b], M_n will overestimate and T_n will under-estimate.

Overestimates (?)

$$T_n \leq \mathcal{I} \leq M_n$$
.

Example: If f is always concave up on [a, b]:



Whenever f is concave up on [a, b], M_n will underestimate and T_n will over-estimate.

$$M_n \leq \mathcal{I} \leq T_n$$
.

7 / 8

Graph of $e^{\cos(x)}$

