Solid of Revolution

If we have a solid of revolution ...

• ... formed by rotating a function f(x) about a horizontal line, then

$$Volume = \int_{a}^{b} \pi [R(x)]^2 dx$$

where R(x) is the radius from the axis of revolution to the curve for $x \in [a, b]$.

• ... formed by rotating a function g(y) about a vertical line, then

$$Volume = \int_{c}^{d} \pi [R(y)]^{2} dy$$

where R(y) is the radius from the axis of revolution to the curve for $y \in [c, d]$.

Math 104-Calculus 2 (Sklensky)

▲ロト ▲興 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

In Class Work

For each three dimensional object described below,

- (a) Sketch the object
- (b) Set up an integral that gives you the volume of the object
- (c) Evaluate the integral to find the volume
 - 1. The solid formed when the region bounded by $y = x^2$ and y = 4 is rotated about the x-axis.
 - 2. The solid formed when the region bounded by $x = \sqrt{y}$, $x = -\sqrt{y}$, and y = 4 (that is, the same region as in Problem 1) is rotated about the line x = 3.

Solutions

1. The solid formed when the region bounded by $y = x^2$ and y = 4 is rotated about the x-axis.

Math 104-Calculus 2 (Sklensky)

In-Class Work

September 18, 2013 3 / 5

Solutions

2. The solid formed when the region bounded by $x = \sqrt{y}$, $x = -\sqrt{y}$, and y = 4 (that is, the same region as in Problem 1) is rotated about the line x = 3.

Notice: While this is the same region we rotated in #1, because we're rotating around x = 3, the solid formed will have a hole.

As in #1, the cross-sections of interest are washers rather than disks
The cross-sections are perpendicular to the *y*-axis rather than to the *x*-axis, so we'll be integrating with respect to *y*.

• Thus $V = \int_{y=0}^{y=4} A(y) \, dy = \int_0^4 \pi \left(\left(R_{\text{outer}} \right)^2 - \left(R_{\text{inner}} \right)^2 \right) \, dy$

- Our axis of rotation is x = 3.
 - $R_{\text{outer}} = \text{distance from } x = 3 \text{ to } x = -\sqrt{y} = 3 + \sqrt{y}$
 - $R_{\text{inner}} = \text{distance from } x = 3 \text{ to } x = \sqrt{y} = 3 \sqrt{y}$

Math 104-Calculus 2 (Sklensky)

Solutions

2. (continued) The solid formed when the region bounded by $x = \sqrt{y}$, $x = -\sqrt{y}$, and y = 4 (that is, the same region as in Problem 1) is rotated about the line x = 3.

Math 104-Calculus 2 (Sklensky)

In-Class Work

September 18, 2013 5 / 5