- 1. Use the ratio test to determine whether the following series converge or diverge.
 - (a) $\sum_{k=1}^{\infty} \frac{2^k}{k!}$
 - (b) $\sum_{n=1}^{\infty} \frac{2^n}{n^{50}}$
- 2. Determine whether the series converges or diverges. If the series converges, find a number N such that the partial sum S_N approximates the sum of the series within .001. If the series diverges, find a number N such that $S_N \geq 1000$.
 - (a) $\sum_{j=2}^{\infty} \frac{1}{j(\ln(j))^5}$
 - (b) $\sum_{k=0}^{\infty} \frac{k}{k^6 + 17}$
 - (c) $\sum_{n=0}^{\infty} \frac{2n}{\sqrt{n^2+5}}$

April 15, 2003 Sklensky