Let $f(x) = e^x$.

Let $P_n(x)$ be the *n*th order Taylor polynomial for f(x) at $x_0 = 0$.

- 1. For n = 0, 1, 2, 3, 4
 - (a) Find $P_n(x)$
 - (b) Check how well $P_n(x)$ approximates f(x) by graphing $P_n(x)$ and f(x) on the same set of axes.
- 2. Use $P_3(x)$ to find an approximation for $e^{1/2}$. Will this be larger or smaller than the actual value of $e^{1/2}$?

March 4, 2003

Sklensky

Let $f(x) = \sin(x)$ and let $P_5(x)$ be the 5th order Taylor polynomial for f(x) at $x_0 = \pi$.

- 1. Find $P_5(x)$
- 2. Verify your answer by graphing $P_5(x)$ and f(x) on the same set of axes.
- 3. Use $P_5(x)$ to find an approximation for sin(6). Will this be larger or smaller than the actual value of sin(6)?

March 4, 2003

Sklensky