From Wednesday's In Class Work:

Let P(x) be the power series

$$1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots = \sum_{k=0}^{\infty} \frac{(-x)^k}{k+1}$$

- 1. When x=1, we have $P(1)=\sum_{k=0}^{\infty}\frac{(-1)^k}{k+1}$. AST $\Rightarrow P(1)$ converges.
- 2. When x = -1, we have $P(-1) = \sum_{k=0}^{\infty} \frac{(1)^k}{k+1} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$

Harmonic series; diverges. (Integral Test would also work.)

Notice: $\sum \frac{1}{k+1}$ diverging means that $\sum \frac{(-1)^k}{k+1}$ converges *conditionally*.

3. When
$$x = \frac{1}{2}$$
, we have $P(\frac{1}{2}) = \sum_{k=0}^{\infty} \frac{(-1/2)^k}{k+1} = \sum_{k=0}^{\infty} (-1)^k \frac{1}{2^k (k+1)}$.

AST
$$\Rightarrow P(\frac{1}{2})$$
 converges.
$$\sum_{k=0}^{\infty} \frac{1}{2^k (k+1)} \le \sum_{k=0}^{\infty} \frac{1}{2^k} \Rightarrow P(\frac{1}{2})$$
 converges

Recall – The Ratio Test:

Suppose that $\sum_{k=1}^{\infty} a_k$ is a series of non-zero terms, and that

$$\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=L.$$

Then

- 1. If L < 1, then $\sum a_k$ converges absolutely.
- 2. If L > 1 (or if $L = \infty$), then $\sum a_k$ diverges.
- 3. If L = 1, the Ratio Test is inconclusive.

In Class Work

Find the interval of convergence for the following power series:

1.
$$\sum_{n=0}^{\infty} (n+1)(x-3)^n$$

$$2. \sum_{j=0}^{\infty} \frac{x^j}{j!}$$

Solutions:

Find the interval of convergence for the following power series:

1.
$$\sum_{n=0}^{\infty} (n+1)(x-3)^n$$

Using the ratio test, find the int. of conv., give or take endpoints:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+2)|x-3|^{n+1}}{(n+1)|x-3|^n}$$

$$= \lim_{n \to \infty} \frac{(n+2)|x-3|}{n+1}$$

$$= |x-3| \lim_{n \to \infty} \frac{n+2}{n+1}$$

$$= |x-3|$$

$$\Rightarrow \sum_{n=0}^{\infty} (n+1)(x-3)^n \text{ converges absolutely if } |x-3| < 1, \text{ diverges if } |x-3| > 1, \text{ i.e. converges absolutely when } -1 < x-3 < 1, \text{ or } 2 < x < 4, \text{ and diverges when } x < 2 \text{ or } x > 4.$$

Solutions:

1. (continued) $\sum_{n=0}^{\infty} (n+1)(x-3)^n$ converges absolutely when 2 < x < 4, and diverges when x < 2 or x > 4.

But what happens at x = 2 and x = 4?

The ratio test is inconclusive, so check these cases individually.

▶ When x = 4, the series we're dealing with is

$$\sum_{n=0}^{\infty} (n+1)(1)^n = \sum_{n=0}^{\infty} (n+1).$$

This series obviously diverges.

When x = 2, the series we're dealing with is $\sum_{n=0}^{\infty} (-1)^n (n+1)$. Using the alternating series test, this series obviously diverges also.

Therefore, the interval of convergence is (2,4).

Solutions:

Find the interval of convergence for the following power series:

$$2. \sum_{j=0}^{\infty} \frac{x^j}{j!}$$

Using the ratio test, find the int. of conv., give or take endpoints:

$$\lim_{j \to \infty} \left| \frac{a_{j+1}}{a_j} \right| = \lim_{j \to \infty} \frac{|x|^{j+1} j!}{|x|^j (j+1)!}$$

$$= \lim_{j \to \infty} \frac{|x|}{j+1}$$

$$= 0$$

Since $\lim_{i\to\infty}\left|\frac{a_{j+1}}{a_i}\right|=0<1$ independent of x, $\sum_{i=0}^{\infty}\frac{x^i}{j!}$ always converges

absolutely, no matter what value of x you may choose to use.

Conclusion: The interval of convergence for $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ is $(-\infty, \infty)$.