Graph of $r = \cos(\theta)$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 1 / 15

Graph of $r = \cos(2\theta)$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 2 / 15

Graph of $r = \cos(3\theta)$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 3 / 15

Graph of $r = \cos(3\theta)$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 3 / 15

Graph of $r = \cos(4\theta)$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 4 / 15

Graph of $r = \cos(4\theta)$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 4 / 15

Graph of $r = 2\cos(\theta)$

Math 104-Calculus 2 (Sklensky)

In-Class Work

April 30, 2012 5 / 15

Graph of $r = 2\cos(\theta)$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 5 / 15

Graph of $r = \cos(\theta) + 3$

Math 104-Calculus 2 (Sklensky)

In-Class Work

April 30, 2012 6 / 15

Graph of $r = \cos(\theta) + 3$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 6 / 15

Graph of $r = \cos(\theta + 2)$

Math 104-Calculus 2 (Sklensky)

In-Class Work

April 30, 2012 7 / 15

Graph of $r = \cos(\theta + 2)$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 7 / 15

Graph of $r = 5\cos(\theta) + 3$

Math 104-Calculus 2 (Sklensky)

In-Class Work

April 30, 2012 8 / 15

Graph of $r = 5\cos(\theta) + 3$

Math 104-Calculus 2 (Sklensky)

April 30, 2012 8 / 15

Area is "radial"

Math 104-Calculus 2 (Sklensky)

In-Class Work

April 30, 2012 9 / 15

Fundamental Polar shapes are wedges not rectangles

Math 104-Calculus 2 (Sklensky)

In-Class Work

April 30, 2012 10 / 15

SQC

Approximate area with wedges:

Math 104-Calculus 2 (Sklensky)

In-Class Work

April 30, 2012 11 / 15

Example:

Calculate the area inside one leaf of the three-leaf clover $r = 2\sin(3\theta)$.

Math 104-Calculus 2 (Sklensky)

In-Class Work

April 30, 2012 12 / 15

æ

996

・ロト ・回ト ・ヨト ・ヨト

In Class Work

- 1. Sketch the graph of $r = 2\sin(3\theta)$, then find the area of one loop. NOTE: Sketching the graph, rather than using Maple, can end up saving you a little time, because you can see when you've completed one leaf, and know what to use for your upper and lower bounds of integration.
- 2. Sketch the area of $r = sin(3\theta) + 4$, then find the area of the completed figure. Choose your interval of integration carefully.

Solutions

1. Sketch the graph of $r = 2\sin(3\theta)$, then find the area of one loop. One loop: from when $2\sin(3\theta) = 0$ the first time to the next time, so from $\theta =$ 0 to $\theta = \pi/3$

Math 104-Calculus 2 (Sklensky)

Solutions

2. Sketch the graph of $r = \sin(3\theta) + 4$, then find the area. Took from $\theta = 0$ to $\theta = 2\pi$.

Area =
$$\frac{1}{2} \int_{0}^{2\pi} (\sin(3\theta) + 4)^{2} d\theta$$

= $\frac{1}{2} \int_{0}^{2\pi} (\sin^{2}(3\theta) + 8\sin(3\theta) + 16) d\theta$
= $\frac{1}{2} \int_{0}^{2\pi} \left[\frac{1}{2} (1 - \cos(2(3\theta))) + 8\sin(3\theta) + 16 \right] d\theta$
= $\frac{1}{2} \int_{0}^{2\pi} \frac{1}{2} - \frac{\cos(6\theta)}{2} + 8\sin(3\theta) + 16 d\theta$
= $\frac{1}{2} \left[\frac{33\theta}{2} - \frac{\sin(6\theta)}{12} - \frac{8\cos(3\theta)}{3} \right]_{0}^{2\pi}$
= $\frac{1}{2} \left[(33\pi - 0 - \frac{8}{3}) - (0 - 0 - \frac{8}{3})) \right] = \frac{33\pi}{2}$

Math 104-Calculus 2 (Sklensky)

In-Class Work

April 30, 2012 15 / 15