Where We're Going:

- When approximating a definite integral *I*, need to know how close the approximation is to the actual value of *I* − that is, need to know how big the error involved in the approximation is.
- If we can't find \mathcal{I} exactly, we can't find this error exactly either.
- ➤ So we find a **bound** on how big the error is: a number that we can guarantee is larger than the actual size of the error. This is called an error bound.
- ▶ In order to have a reasonable idea of the size of the error, we'd like for our error bounds to be as close to the actual size of the error as we can find with a reasonable amount of effort.

1 / 9

Where We've Been:

Let f be a continuous function, and let $\mathcal{I} = \int_a^b f(x) dx$.

Recall: the error in using M_n to approximate $\mathcal{I} = |\mathcal{I} - M_n|$,. Use similar notation for the error when using L_n , R_n , or T_n .

You developed two error bound formulas:

▶ If f is monotone on [a, b] (always increasing, or always decreasing), then

$$|\mathcal{I} - L_n| \le |R_n - L_n|$$
 and $|\mathcal{I} - R_n| \le |R_n - L_n|$

▶ If f is concave up on [a, b] or concave down on [a, b], then

$$|\mathcal{I} - M_n| \le |T_n - M_n|$$
 and $|\mathcal{I} - T_n| \le |T_n - M_n|$

Where We've Been:

Theorem 7.1: Suppose that f'' is continuous on [a, b]. Let K be any upper bound on |f''| on [a, b]. i.e. $|f''(x)| \leq K$ for all

 $x \in [a, b]$.

Then

$$|\mathcal{I} - \mathcal{T}_n| \le \frac{K(b-a)^3}{12n^2}$$
 and $|\mathcal{I} - M_n| \le \frac{K(b-a)^3}{24n^2}$

Note: We're using the word bound twice.

- ▶ $\frac{K(b-a)^3}{12n^2}$ and $\frac{K(b-a)^3}{24n^2}$ are error bounds (an upper bound on the size of the error)
- \blacktriangleright K is an upper bound on the size of |f''(x)| on the interval [a, b].

Example:

Let
$$\mathcal{I} = \int_0^{10} e^{\cos(x)} dx$$
. How close does M_{50} approximate /?

- ▶ Use Maple to find M_{50} .
- ► How good an approximation is it?
- ▶ The actual error is $|\mathcal{I} M_{50}|$.
- ▶ If Maple won't calculate, can't know the actual error exactly.
- ▶ Plug a = 0, b = 10, n = 50 into $|\mathcal{I} M_{50}| \le \frac{K(b-a)^3}{24n^2}$; simplify.
- ▶ To find K: Use Maple to look at the graph of |f''(x)| over the interval, and pick a number close to but bigger than the the absolute value of the second derivative ever is on [0,10]. (See next slide). This is your choice for K.
- ▶ Substitute into error bound formula to find an upper bound on the error, that you hope is reasonably close to the actual error.

Using Maple to find a good choice for K:

- Type in the function (in our example, exp(cos(x)))
- Control-click on output (the function). Differentiate - with respect to x
- Control-click on new output (the derivative). Differentiate - with respect to x
- ▶ Click on absolute-value bars in Expression Palette. Replace the a with the 2nd derivative by clicking on Command (squiggle) L, and entering the line number of the second derivative in the pop-up menu.
- Control-click on the output (absolute value of the 2nd deriv). Plots-Plot Builder, enter [0, 10]
- ▶ Observe the graph. Pick a number that is higher than but close to |f''(x)| on all of [a,b]
 - If you want to check whether a potential choice for K is in fact larger than |f''(x)|
 - ▶ Example: To check $|f''(x)| \le 2.75$ over [a, b], type 2.75. Highlight, drag onto graph of |f''(x)|. If the horizontal line is always above the graph of the second derivative, can use that number as K.

In Class Work

Let
$$\mathcal{I} = \int_0^4 \arctan\left(x^2 \sin(x)\right) dx$$

- 1. Use Maple to calculate T_{100} . Tools-Tutors-Calculus-Single Variable Riemann Sums
- 2. How close is T_{100} to the actual value of \mathcal{I} ?
- 3. Determine how many subintervals n you need to use in order for T_n to approximate \mathcal{I} within 0.0001. Find that T_n using Maple.

Solutions

Let
$$\mathcal{I} = \int_0^4 \arctan\left(x^2 \sin(x)\right) dx$$

1. Use Maple to calculate T_{100} .

$$T_{100} \approx 1.578246303$$
.

2. How close is T_{100} to the actual value of \mathcal{I} ?

$$|\mathcal{I} - \mathcal{T}_n| \le \frac{K(b-a)^3}{12n^2} = \frac{K(4-0)^3}{(12)(100)^2} = \frac{K}{1875} \approx 0.0005333K$$

Looking at the graph of |f''(x)| over [0,4], K=65 will work. Thus

$$|\mathcal{I} - T_n| \le \frac{65}{1875} \approx 0.0347.$$

 T_{100} is within 0.0347 of the actual value of \mathcal{I} . That is,

$$T_{100} - 0.0347 \le \mathcal{I} \le T_{100} + 0.0347$$

Solutions

Let
$$\mathcal{I} = \int_0^4 \arctan\left(x^2 \sin(x)\right) dx$$

3. Determine how many subintervals n you need to use in order for T_n to approximate \mathcal{I} within 0.0001. Find T_n using Maple.

Still know: a = 0, b = 4, K = 65. But this time, we don't know n.

$$|\mathcal{I} - \mathcal{T}_n| \leq \frac{K(b-a)^3}{12n^2} = \frac{65(4-0)^3}{12n^2} \stackrel{\text{simplify}}{=} \frac{1040}{3n^2} \approx \frac{346.67}{n^2}$$

Want:
$$|\mathcal{I} - \mathcal{T}_n| \le 0.0001$$

Want:
$$|\mathcal{I} - T_n| \le 0.0001$$
 Know: $|\mathcal{I} - T_n| \le \frac{1040}{3n^2}$

If find *n* so that $\frac{1040}{3n^2} \le 0.0001$, then will have

$$|\mathcal{I} - T_n| \le \frac{1040}{3n^2} \le 0.0001 \Rightarrow |\mathcal{I} - T_n| \le 0.0001$$

Solutions (continued)

Let
$$\mathcal{I} = \int_0^4 \arctan\left(x^2 \sin(x)\right) dx$$

3. Determine how many subintervals n you need to use in order for T_n to approximate \mathcal{I} within 0.0001. Find T_n using Maple.

Need to find *n* **so that** : $\frac{1040}{3n^2} \le 0.0001$

$$\frac{\frac{1040}{3n^2}}{\frac{3}{3n^2}} \leq \frac{1}{10000}$$

$$\frac{\frac{10400000}{3}}{3} \leq n^2$$

$$\frac{\sqrt{\frac{10400000}{3}}}{3} \leq n$$

$$1861.8 \leq n$$

Using n = 1862, $T_{1862} \approx 1.57826$