Recall

• We've seen that the improper integral $\int_0^1 \frac{1}{\sqrt{x}} dx$ converges, to 2. We can think of the signed area of the region below as being 2.

In-Class Work

■ ◆ ■ ◆ ■ ク < ペ March 8, 2012 1 / 12

(日) (同) (三) (三)

Recall

• We've seen that the improper integral $\int_0^1 \frac{1}{\sqrt{x}} dx$ converges, to 2. We can think of the signed area of the region below as being 2.

This signed area is 2 (in the limit) no matter how we find it: that is, whether we integrate w.r.t. to x or w.r.t. y! In other words ...

Math 104-Calculus 2 (Sklensky)

In-Class Work

March 8, 2012 1 / 12

(日) (周) (日) (日) (日)

Recall

• We've seen that the improper integral $\int_0^1 \frac{1}{\sqrt{x}} dx$ converges, to 2. We can think of the signed area of the region below as being 2.

This signed area is 2 (in the limit) no matter how we find it: that is, whether we integrate w.r.t. to x or w.r.t. y! In other words ...

$$\int_0^1 \frac{1}{\sqrt{x}} \, dx = 2 = \int_0^1 1 \, dy + \int_1^\infty \frac{1}{y^2} \, dy.$$

Math 104-Calculus 2 (Sklensky)

Definition:

If f(x) is continuous on the interval $[a, \infty)$, we define the **improper** integral $\int_{a}^{\infty} f(x) dx$ to be

$$\int_a^\infty f(x) \ dx \stackrel{\text{\tiny def}}{=} \lim_{R \to \infty} \int_a^R f(x) \ dx.$$

Similarly, if f(x) is continuous on the interval $(-\infty, a]$, we define

$$\int_{-\infty}^{a} f(x) \ dx \stackrel{\text{def}}{=} \lim_{R \to \infty} \int_{-R}^{a} f(x) \ dx.$$

In either case, if the limit exists (and equals some value L), we say that the improper integral **converges** (to L). If the limit does not exist (whether because it is infinite or for other reasons), we say that the improper integral **diverges**.

Math 104-Calculus 2 (Sklensky)

March 8, 2012 2 / 12

In Class Work

1. As $x \to \infty$, does each *integrand* diverge or converge (if so, to what?) Also, does each improper *integral* diverge or converge (if so, to what?)

a.
$$\int_{1}^{\infty} \frac{1}{x^3} dx$$
 b. $\int_{1}^{\infty} 1 + \frac{1}{x^2} dx$ c. $\int_{1}^{\infty} \frac{1}{x} dx$ d. $\int_{0}^{\infty} x e^{-x^2} dx$

2. Think about all the results you've seen, as well as the big picture.
(a) Is it *necessary* that f(x) converge to 0 as x → ∞ in order for ∫_a[∞] f to converge to a finite number?

(b) If
$$f(x)$$
 does converge to 0 as $x \to \infty$, must $\int_{a}^{\infty} f$ converge to a finite number? That is, is $f(x) \to 0$ a sufficient condition for $\int_{a}^{\infty} f$ to converge to a finite number?

Math 104-Calculus 2 (Sklensky)

Important Lessons:

 There is a huge distinction between f(x) converging – that is, lim f(x) being finite – and ∫_a[∞] f(x) dx converging. Just because you can find lim f(x), and it's a finite number, does **not** mean that ∫_a[∞] f(x) dx will be finite.

Important Lessons:

 There is a huge distinction between f(x) converging – that is, lim f(x) being finite – and ∫_a[∞] f(x) dx converging. Just because you can find lim f(x), and it's a finite number, does **not** mean that ∫_a[∞] f(x) dx will be finite.

2. In fact, if $\lim_{x\to\infty} f(x)$ exists **but is not 0**, $\int_a^{\infty} f$ diverges! No need to investigate any further.

Important Lessons:

- There is a huge distinction between f(x) converging that is, lim f(x) being finite – and ∫_a[∞] f(x) dx converging. Just because you can find lim f(x), and it's a finite number, does **not** mean that ∫_a[∞] f(x) dx will be finite.
- 2. In fact, if $\lim_{x\to\infty} f(x)$ exists **but is not 0**, $\int_a^{\infty} f$ diverges! No need to investigate any further.
- 3. If $\lim_{x\to\infty} f(x)$ is 0, $\int_{a}^{\infty} f$ may converge or it may diverge to find out, you must actually do the antidifferentiation and the limit.

Math 104-Calculus 2 (Sklensky)

March 8, 2012 4 / 12

1(a)
$$\int_{1}^{\infty} \frac{1}{x^{3}} dx$$

1/x³ converges to 0 as $x \to \infty$

$$\int_{1}^{\infty} \frac{1}{x^{3}} dx = \lim_{R \to \infty} \int_{1}^{R} x^{-3} dx = \lim_{R \to \infty} \left(-\frac{1}{2} \cdot \frac{1}{x^{2}} \right) \Big|_{1}^{R}$$
$$= \lim_{R \to \infty} \left(-\frac{1}{2R^{2}} + \frac{1}{2} \right) = \frac{1}{2}$$

This improper integral converges, to $\frac{1}{2}$.

▶ Results: Integrand converges to 0; integral converges.

Math 104-Calculus 2 (Sklensky)

In-Class Work

March 8, 2012 5 / 12

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □ ● の Q @

1(b)
$$\int_{1}^{\infty} 1 + \frac{1}{x^{2}} dx$$

 $1 + \frac{1}{x^{2}} \to 1 \text{ as } x \to \infty$
 $\int_{1}^{\infty} 1 + \frac{1}{x^{2}} dx = \int_{1}^{\infty} 1 dx + \int_{1}^{\infty} \frac{1}{x^{2}} dx$

We've seen that the first integral on the right diverges (to ∞), the second one converges (to 1).

Because this sum does not approach a finite number, it diverges.

• **Result:** Integrand converges to 1; integral diverges.

$$1(c) \int_{1}^{\infty} \frac{1}{x} dx$$

$$\frac{1}{x} \to 0 \text{ as } x \to \infty$$

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{1}{x} dx = \lim_{R \to \infty} \ln(x) \Big|_{1}^{R}$$
$$= \lim_{R \to \infty} (\ln(R) - \ln(1)) = \lim_{R \to \infty} \ln(R) = \infty$$

This improper integral diverges (slowly).

▶ **Result:** Integrand converges to 0; integral diverges.

Math 104-Calculus 2 (Sklensky)

In-Class Work

March 8, 2012 7 / 12

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

1(d) $\int_{0}^{\infty} xe^{-x^2} dx$ As $x \to \infty$, $\frac{x}{e^{x^2}} \to \frac{\infty}{\infty}$. Another limit we can't do b/c it's in *indeterminate form*! Looking at a graph of xe^{-x^2} , can see that integrand approaches 0.

Let
$$u = -x^2$$
, so $du = -2x dx$, or $-\frac{1}{2} du = x dx$
Also, $x = 0 \Rightarrow u = 0$; $x = \infty \Rightarrow u = -\infty$.

$$\int_{0}^{\infty} x e^{-x^{2}} dx = -\frac{1}{2} \int_{0}^{-\infty} e^{u} du = \frac{1}{2} \int_{-\infty}^{0} e^{u} du = \frac{1}{2} \lim_{R \to \infty} e^{u} \Big|_{-R}^{0}$$
$$= \frac{1}{2} \lim_{R \to \infty} 1 - e^{-R} = \frac{1}{2} \left(1 - \lim_{R \to \infty} \frac{1}{e^{R}} \right) = \frac{1}{2}$$

The improper integral converges, to 1.

▶ **Result:** Integrand converges to 0; integral converges.

Math 104-Calculus 2 (Sklensky)

In-Class Work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- 2. Think about all the results you've seen, as well as the big picture.
 - (a) Is it *necessary* that f(x) converge to 0 as $x \to \infty$ in order for $\int_{a}^{\infty} f(x) dx$ to converge to a finite number?

Convergent integral	What <i>f</i> converges to
$\int_1^\infty \frac{1}{x^2} dx$	$rac{1}{x^2} ightarrow 0$
$\int_1^\infty \frac{1}{x^3} dx$	$\frac{1}{x^3} \rightarrow 0$
$\int_0^\infty x e^{-x^2} dx$	$xe^{-x^2} \rightarrow 0$

For what it's worth, so far every example that we've seen of a convergent improper integral *has* had an integrand that converges to 0 as $x \to \infty$. But that's not enough.

Math 104-Calculus 2 (Sklensky)

In-Class Work

March 8, 2012 9 / 12

2(a) (continued)

As
$$x \to \infty$$
, $f(x) \to \infty$,
and $\int_a^\infty f(x) \ dx = \infty$

As
$$x \to \infty$$
, $f(x) \to k \neq 0$, and

$$\int_{a}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{a}^{R} f(x) dx$$

$$> \lim_{R \to \infty} \int_{a}^{R} k dx$$

$$> \lim_{R \to \infty} kR = \pm \infty$$

Math 104-Calculus 2 (Sklensky)

а

In-Class Work

March 8, 2012 10 / 12

2(a) (continued) f(x) As $x \to \infty$, $\lim_{x \to \infty} f(x)$ d.n.e., and $\int_{a}^{\infty} f(x) \, dx = \lim_{R \to \infty} f(x) \, dx \, \text{d.ne., so}$ the integral diverges **Conclusion:** The only way $\int_{-\infty}^{\infty} f(x) dx$ can have a **hope** of converging to a finite number is if $\lim_{x\to\infty} f(x) = 0$. In other words, if $\lim_{x\to\infty} f(x) \neq 0$, $\int_{2}^{\infty} f(x) dx$ must diverge.

Math 104-Calculus 2 (Sklensky)

March 8, 2012 11 / 12

2(b) If f(x) does converge to 0 as $x \to \infty$, must $\int_{a}^{b} f(x) dx$ automatically converge to a finite number? That is, is $f(x) \rightarrow 0$ a sufficient condition for $\int_{2}^{\infty} f(x) dx$ to converge to a finite number? Functions that | What $\int_{2}^{\infty} f(x) dx$ does converge to 0 xe^{-x^2} converges $\frac{1}{x^2}$ converges $\frac{1}{x^3}$ converges $\frac{1}{x}$ diverges Thus knowing that $f(x) \rightarrow \infty$ is *not* sufficient information to conclude that $\int_{-\infty}^{\infty} f(x) dx$ converges! ▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへで Math 104-Calculus 2 (Sklensky) In-Class Work March 8, 2012 12 / 12