Recall

- A function f(x) converges as x → ∞ if lim f(x) is finite, i.e. if f(x) has a horizontal asymptote on the right side of the graph.
- An improper integral ∫_a[∞] f(x) dx converges if lim_{R→∞} ∫_a^R f(x) dx is finite, i.e. if the signed area between f and the x-axis is finite.
- There is a big distinction between f(x) converging and ∫_a[∞] f(x) dx converging. lim_{x→∞} f(x) being finite does not guarantee that ∫_a[∞] f(x) dx will be finite.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

Recall: Examples of Infinite Intervals of Integration

Problem		As $x \to \infty$,	$\int_1^\infty f(x) dx$
	f(x) = 2	f(x) converges	$\int_1^\infty f(x) dx$ diverges
		(to 2)	$(to \infty)$
	$f(x) = 10^{-100}$	f(x) converges	$\int_1^\infty f(x) dx$ diverges
		(to 10^{-100})	(to ∞)
	$f(x) = \frac{1}{x^2}$	f(x) converges	$\int_1^\infty f(x) dx$ converges
		(to 0)	(to 2)
1(a)	$f(x) = \frac{1}{x^3}$	f(x) converges	$\int_{1}^{\infty} f(x) dx$ converges
		(to 0)	$(to \frac{1}{2})$
1(b)	$f(x) = 1 + \frac{1}{x^2}$	f(x) converges	$\int_1^\infty f(x) dx$ diverges
		(to 1)	(to ∞)
1(c)	$f(x) = \frac{1}{x}$	f(x) converges	$\int_1^\infty f(x) dx$ diverges
		(to 0)	(to ∞)
1(d)	$f(x) = xe^{-x^2}$	f(x) converges	$\int_{1}^{\infty} f(x) dx$ converges
		(to 0)	$(to \frac{1}{2})$

Math 104-Calculus 2 (Sklensky)

Image: A match a ma

In Class Work From Thursday

2. Think about all the results you've seen, as well as the big picture.
(a) Is it *necessary* that f(x) converge to 0 as x → ∞ in order for ∫_a[∞] f to converge to a finite number?
(b) If f(x) does converge to 0 as x → ∞, must ∫_a[∞] f converge to a finite number? That is, is f(x) → 0 a sufficient condition for ∫_a[∞] f to number?

converge to a finite number?

イロト 不得 トイヨト イヨト 二日

Important Conclusion:

- A function f(x) converges as x → ∞ if lim f(x) is finite, i.e. if f(x) has a horizontal asymptote on the right side of the graph.
- An improper integral ∫_a[∞] f(x) dx converges if lim_{R→∞} ∫_a^R f(x) dx is finite, i.e. if the signed area between f and the x-axis is finite.
- There is a big distinction between f(x) converging and ∫_a[∞] f(x) dx converging. lim_{x→∞} f(x) being finite does not guarantee that ∫_a[∞] f(x) dx will be finite.
- ▶ In fact, if $\lim_{x\to\infty} f(x)$ exists but is not 0, $\int_a^{\infty} f(x) dx$ diverges! (If f(x) itself diverges, $\int_a^{\infty} f(x) dx$ will of course diverge.)
- If lim f(x) = 0, ∫^b_a f(x) dx may converge or it may diverge you must investigate further.

Math 104-Calculus 2 (Sklensky)

Infinite Intervals of Integration

The only way ∫_a[∞] f(x) dx can have a hope of converging to a finite number is if the integrand, f(x), converges to 0 as x → ∞

In Class Work

1. Let
$$I = \int_{1}^{\infty} \frac{1}{x^{p}} dx$$
. Determine whether *I* converges or diverges if
(a) $p > 1$
(b) $p = 1$
(c) $0
(d) $p = 0$
(e) $p < 0$$

March 9, 2012 6 / 9

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Solutions:

1. Let $I = \int_{1}^{\infty} \frac{1}{x^{p}} dx$. Determine whether I converges or diverges if (a) p > 1:

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{R \to \infty} \int_{1}^{R} x^{-p} dx = \lim_{R \to \infty} \frac{1}{-p+1} x^{-p+1} \Big|_{1}^{R}$$
$$= \lim_{R \to \infty} \frac{1}{1-p} R^{1-p} - \frac{1}{1-p}.$$

 $p > 1 \Rightarrow 1 - p < 0 \Rightarrow p - 1 > 0$

$$\lim_{R \to \infty} R^{1-p} = \lim_{R \to \infty} \frac{1}{R^{p-1}} = 0.$$

Thus $\int_{1}^{\infty} \frac{1}{x^{p}} dx = 0 - \frac{1}{1-p} = \frac{1}{p-1}.$

Math 104-Calculus 2 (Sklensky)

March 9, 2012 7 / 9

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Solutions:

1(b) p = 1

We've already done this case. We know that $\int_{1}^{\infty} \frac{1}{x} dx = \infty$. 1(c) 0 :As in the case of <math>p > 1,

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{R \to \infty} \frac{1}{1 - p} R^{1 - p} - \frac{1}{1 - p}.$$

 $0 0 \Rightarrow \lim_{R \to \infty} R^{1-p} \to \infty.$ In this case, the integral again diverges.

Math 104-Calculus 2 (Sklensky)

March 9, 2012 8 / 9

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

Solutions:

1(d) p = 0:

$$\int_1^\infty \frac{1}{x^p} \, dx = \int_1^\infty 1 \, dx = \infty,$$

as we've already seen.

1(e)
$$p < 0$$
:
Let $a = -p > 0$.
 $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} x^{-p} dx = \int_{1}^{\infty} x^{a} dx.$

As $x \to \infty$, $x^a \to \infty$, and so the area under this curve is clearly infinite!

Math 104-Calculus 2 (Sklensky)

▶ ◀ 둘 ▶ 둘 ∽ ९ ៚ March 9, 2012 9 / 9

(日) (同) (日) (日)