
1. Find the signed volume between the surface z = 1 + x + y and the
region R in the xy -plane bounded by the graphs x = 1, y = 0, y = x2.

Looking at the region R shown on the left, we can see that we can either
say that

0 ≤ x ≤ 1 and 0 ≤ y ≤ x2

or

0 ≤ y ≤ 1 and
√

y ≤ x ≤ 1.

I will choose to use 0 ≤ x ≤ 1 and 0 ≤ y ≤ x2
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1. Find the signed volume between the surface z = 1 + x + y and the
region R in the xy -plane bounded by the graphs x = 1, y = 0, y = x2.

Choosing to use 0 ≤ x ≤ 1 and 0 ≤ y ≤ x2

Thus by Fubini’s Theorem,

V =

∫∫
R

1 + x + y dA =

∫ 1

0

(∫ x2

0
1 + x + y dy

)
dx .
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1. Find the signed volume between the surface z = 1 + x + y and the
region R in the xy -plane bounded by the graphs x = 1, y = 0, y = x2.

Thus by Fubini’s Theorem,

V =

∫∫
R

1 + x + y dA =

∫ 1

0

(∫ x2

0
1 + x + y dy

)
dx

=

∫ 1

0

(
y + xy +

y2

2

∣∣∣∣x2

0

)
dx

=

∫ 1

0
x2 + x3 +

1

2
x4 dx = ... =

41

60
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2. Find the volume below the surface z = e−x2
and above the triangle R

in the xy -plane bounded by the x-axis, the line x = 1, and the line y = x .

Looking at the region R shown on the left, we see that we can write the
region in two ways again:

0 ≤ x ≤ 1 and 0 ≤ y ≤ x

or

0 ≤ y ≤ 1 and y ≤ x ≤ 1.

I will choose to use 0 ≤ x ≤ 1 and 0 ≤ y ≤ x
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2. Find the volume below the surface z = e−x2
and above the triangle R

in the xy -plane bounded by the x-axis, the line x = 1, and the line y = x .

Choosing to use 0 ≤ x ≤ 1 and 0 ≤ y ≤ x

Thus by Fubini’s Theorem,

V =

∫∫
R

e−x2
dA =

∫ 1

0

(∫ x

0
e−x2

dy

)
dx
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2. Find the volume below the surface z = e−x2
and above the triangle R

in the xy -plane bounded by the x-axis, the line x = 1, and the line y = x .

Thus by Fubini’s Theorem,

V =

∫∫
R

e−x2
dA =

∫ 1

0

(∫ x

0
e−x2

dy

)
dx

=

∫ 1

0

(
ye−x2

∣∣∣∣x
0

)
dx

=

∫ 1

0
xe−x2

dx
u−sub

= ... = −1

2

(
1

e
− 1

)
= − 1

2e
+

1

2
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3.(a)

Try to evaluate

∫ π

0

∫ π

x

sin(y)

y
dy dx as it’s written. What happens?

∫ π

0

∫ π

x

sin(y)

y
dy dx =

∫ π

0

∫ π

x

1

y
sin(y) dy dx

I can already see that neither substitution nor integration by parts is going
to work wonders on this integral.

When I try to do the inner integral on Maple, I get some function called
”Si(y)”, which I’ve never heard of ... or at least, it rings no bells.

Math 236-Multi (Sklensky) Solutions -In-Class Work April 12, 2010 7 / 17



3(b) Sketch the region we’re integrating over.

In order to sketch the region, I need
to look at what intervals I’m inte-
grating over.

Looking at the integral∫ π

0

(∫ π

x

sin(y)

y
dy

)
dx , we

see that 0 ≤ x ≤ π and x ≤ y ≤ π.

In other words, as x goes from 0 to
π, y goes from the diagonal lines
y = x up to the horizontal line y =
π.
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3(c) Reverse the order of integration (using the sketch you developed in
(b)), and try to evaluate the integral. Is this way more effective than the
first?

Looking at the region R, I can see
that we can also say that

0 ≤ y ≤ π and 0 ≤ x ≤ y .

We can thus rewrite the integral:∫ π

0

(∫ y

0

sin(y)

y
dx

)
dy .

Because this time we’re integrating
with respect to x first, and because
our integrand is constant with re-
spect to x , this is suddenly much
easier!
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3(c) Reverse the order of integration (using the sketch you developed in
(b)), and try to evaluate the integral. Is this way more effective than the
first?
We have just found that∫ π

0

∫ y

0

sin(y)

y
dy dx =

∫ π

0

(∫ y

0

sin(y)

y
dx

)
dy .

The integral on the left is a very difficult integral for us. As for the
integral on the right ...∫ π

0

(∫ y

0

sin(y)

y
dx

)
dy =

∫ π

0

(
sin(y)

y

∫ y

0
1 dx

)
dy

=

∫ π

0

(
sin(y)

y

(
x
)∣∣∣∣y

0

)
dy

=

∫ π

0

sin(y)

y
(y − 0) dy =

∫ π

0
sin(y) dy

= − cos(y)
∣∣π
0

= −(−1)− (−1) = 2
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4. Find the volume of portion of the solid bounded by the cylinders
x2 + y2 = 1 and y2 + z2 = 1 that lies in the first octant.

x2 + y2 = 1 is a cylinder of radius 1 extending upwards along the z-axis
(in pale yellow), while y2 + z2 = 1 is a cylinder of radius 1 extending along
the x-axis (in skyblue).
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4. Find the volume of portion of the solid bounded by the cylinders
x2 + y2 = 1 and y2 + z2 = 1 that lies in the first octant.

We only want to consider the portion that lies in the first octant; that is,
where x ≥ 0, y ≥ 0, and z ≥ 0:
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4. Find the volume of portion of the solid bounded by the cylinders
x2 + y2 = 1 and y2 + z2 = 1 that lies in the first octant.

We want the portion that’s enclosed by the xz-plane and the yz-plane as
two sides, the portion of the top-half of the cylinder y2 + z2 = 1 that lies
above the quarter of the unit circle that lies in the first quadrant of the
xy -plane, and that has as its third ”side” the portion of the vertical
cylinder that goes from the xy -plane to this top portion.
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4. Find the volume of portion of the solid bounded by the cylinders
x2 + y2 = 1 and y2 + z2 = 1 that lies in the first octant.

Our solid lies under the top half
of y2 + z2 = 1, over the re-
gion that is the quarter unit-
circle that lies in the first quad-
rant of the xy -plane.

Thus the function we’re integrating is

z =
√

1− y2,

and the region we’re integrating over is

R : 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1− x2 or R : 0 ≤ y ≤ 1, 0 ≤ x ≤
√

1− y2.
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4. Find the volume of portion of the solid bounded by the cylinders
x2 + y2 = 1 and y2 + z2 = 1 that lies in the first octant.

The function we’re integrating is

z =
√

1− y2,

and the region we’re integrating over is

R : 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1− x2 or R : 0 ≤ y ≤ 1, 0 ≤ x ≤
√

1− y2.

Thus the volume is given by

V =

∫ 1

0

(∫ √1−x2

0

√
1− y2 dy

)
dx

or

V =

∫ 1

0

(∫ √1−y2

0

√
1− y2 dx

)
dy .
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4. Find the volume of portion of the solid bounded by the cylinders
x2 + y2 = 1 and y2 + z2 = 1 that lies in the first octant.

V =

∫ 1

0

∫ √1−x2

0

√
1− y2 dy dx or V =

∫ 1

0

∫ √1−y2

0

√
1− y2 dx dy .

Which would we rather do?
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4. Find the volume of portion of the solid bounded by the cylinders
x2 + y2 = 1 and y2 + z2 = 1 that lies in the first octant.

V =

∫ 1

0

∫ √1−y2

0

√
1− y2 dx dy

=

∫ 1

0
x
√

1− y2

∣∣∣∣
√

1−y2

0

dy

=

∫ 1

0
1− y2 dy

= y − 1

3
y3

∣∣∣∣1
0

= 1− 1

3
=

2

3
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