1. Find the surface area of the portion of  $z = x^2 + y^2$  between  $x = 4 - y^2$  and x = 1



$$= \int_{-\sqrt{3}}^{\sqrt{3}} \int_{1}^{4-y^2} \sqrt{4x^2 + 4y^2 + 1} \ dx \ dy$$

You can't do this, and neither can Maple, exactly- so approximate!





$$SA = \iint_{R} \sqrt{f_{x}(x,y)^{2} + f_{y}(x,y)^{2} + 1} dA$$
$$= \int_{-4}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} \sqrt{4x^{2} + 4y^{2} + 1} dy dx$$

Nasty looking!





Because both the region we're integrating over and the surface are circular in nature, our double integral is screaming to be converted to polar!

- ► Region R: circle of radius 4 centered at the origin, so  $0 \le r \le 4$  and  $0 \le \theta \le 2\pi$ .
- ► Remember that  $x^2 + y^2 = r^2$ , and  $dx dy = r dr d\theta$ .

$$SA = \int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} \sqrt{4x^2 + 4y^2 + 1} \ dy \ dx$$

- ▶ Region R:  $0 \le r \le 4$  and  $0 \le \theta \le 2\pi$ .
- $\rightarrow$   $x^2 + y^2 = r^2$ , and  $dx dy = r dr d\theta$ .

$$SA = \int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} \sqrt{4x^2 + 4y^2 + 1} \, dy \, dx$$
$$= \int_{0}^{2\pi} \int_{0}^{4} (\sqrt{4r^2 + 1}) r \, dr \, d\theta$$

Much better!

4 / 6

$$SA = \int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} \sqrt{4x^2 + 4y^2 + 1} \, dy \, dx$$

$$= \int_{0}^{2\pi} \int_{0}^{4} (\sqrt{4r^2 + 1}) r \, dr \, d\theta$$
Let  $u = 4r^2 + 1$ .

Then  $du = 8r \, dr$ , and  $r = 0 \Rightarrow u = 1$ ;  $r = 4 \Rightarrow u = 65$ 

$$= \frac{1}{8} \int_{0}^{2\pi} \int_{1}^{65} u^{1/2} \, du \, d\theta$$

$$= \frac{1}{12} \int_{0}^{2\pi} u^{3/2} \Big|_{1}^{65} \, d\theta = \frac{1}{12} \int_{0}^{2\pi} 65^{3/2} - 1 \, d\theta$$

$$= \frac{\pi}{6} (65^{3/2} - 1) \approx 273.87.$$