
Recall:

Green’s Theorem: Let C be a piecewise-smooth, simple closed curve in
R2 with positive orientation that encloses the region R. Suppose that−→
F (x , y) =< M(x , y), N(x , y) >, where M(x , y) and N(x , y) are
continuous with continuous first partials in some open region D where
R ⊂ D. Then ∮

C

−→
F · d−→r =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA.
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Recall: Why

∮
C

−→
F · d−→r =

∮
C
M dx +

∮
C
N dy :

If
−→
F (x , y) =< M(x , y), N(x , y) >, and if −→r (t) =< x(t), y(t) >,

a ≤ t ≤ b is parametrization for C, then∮
C

−→
F · d−→r =

∫ b

a

〈
M
(
x(t), y(t)

)
, N
(
x(t), y(t)

)〉
·
〈
x ′(t), y ′(t)

〉
dt

=

∫ b

a
M
(
x(t), y(t)

)
x ′(t) dt +

∫ b

a
N
(
x(t), y(t)

)
y ′(t) dt

=

∮
C

M dx +

∮
C

N dy
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Special Case:

C (the boundary of R) is intersected by any vertical or horizontal line at
most twice

A BR

xba

C2: y=g2(x)

C1: y=g1(x)

R

x

C3: y=h1(x)

C4: y=h2(x)

y

y
E

D

R

x

y
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C = C1 ∪ C2 C = C3 ∪ C4
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Example:

Compute the area of the ellipse 4x2 + y2 = 16.

I Look up a formula

Boring!

I Use a double integral/single integral

Area =

∫∫
R

1 dA

=

∫ 3

−3

∫ 1
3

√
36−4x2

− 1
3

√
36−4x2

1 dy dx

=

∫ 3

−3

1

3

√
36− 4x2 −

(
−1

3

√
36− 4x2

)
dx

Same integral as we would have found in Calc 2

=
2

3

∫ 3

−3

√
36− 4x2 dx . Ellipses ought to be easy!

I Try Green’s Theorem
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Vector Calculus:

I Motion - analyzing the motion of particles along curved paths in 2-
and 3- space

I Curvature

If you know the curvature at every point, you can construct
the curve (give or take it’s location in the plane)
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Multivariate Calculus:

I Limits: some counter-intuitive results!
I Partial Differentiation: Partial derivatives can be combined in various

ways to create various single “derivatives”:
I The Gradient

I Divergence
I Curl

I Multiple Integrals:

I Double Integrals: used to find area, surface area, volume, mass, center
of mass

I Triple Integrals: 3D mass and center of mass, volume, a generalization
of Green’s Theorem, etc
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Intersection of Vector Calc and Multivariate Calc

I Line Integrals- Used to integrate over curves

I w.r.t. surface area - vertical area from a curve to a surface
I component-wise - work, fluid flows
I Can be generalized to surface integrals, which extends the idea of a

double integral – you’re integrating over a curved surface rather than
over a flat region.

I Fundamental Theorems

I Fundamental Theorem of Line Integrals, also known as the Gradient
Theorem. - the work done by a conservative vector field is equal to
the difference of the potential at the end of a curve and the potential
at the beginning.

I Green’s Theorem - the work done around a simple closed curve can be
related to a double integral over the region bounded by that curve.

I Stoke’s Theorem- a huge generalization of the FTC. Green’s Theorem
is a special case, as is another important theorem, the Divergence
Theorem.
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