Let
$$\overrightarrow{\mathbf{r}}(t) = \langle t \cos(t), t \sin(t), t \rangle$$
.

- 1. Find the integral that gives the arclength of $\overrightarrow{\mathbf{r}}(t)$ for $-4\pi \le t \le 4\pi$. Simplify it as much as possible.
- 2. The equation $z^2 = x^2 + y^2$ defines a surface in 3-space every point on the surface satisfies this equation. Show that the graph of $\overrightarrow{\mathbf{r}}(t)$ lies on this surface.