Consider the points $P_1 = (-1, 3, 4)$ and $P_2 = (2, -1, 3)$. 1. Find an equation of the line through P_1 and P_2 .

For a line, we need a point and a direction.

For the point, can choose P_1 or P_2 . I'll use $P_1 = (-1, 3, 4)$.

For the direction, can use $\overrightarrow{\mathbf{P_1P_2}}$ or $\overrightarrow{\mathbf{P_2P_1}}$. I'll use $\overrightarrow{\mathbf{P_1P_2}} = < 3, -4, -1 > .$

A point (x, y, z) is on the line iff the vector $\langle x + 1, y - 3, z - 4 \rangle$ is parallel to $\langle 3, -4, -1 \rangle$, or in other words iff

$$< x + 1, y - 3, z - 4 > = t < 3, -4, -1 >$$

$$\implies x = -1 + 3t, y = 3 - 4t, z = 4 - t.$$

Math 236-Multi (Sklensky)

February 8, 2010 1 / 1

Consider the points $Q_1 = (2,0,3)$, $Q_2 = (4,1,-2)$, and $Q_3 = (5,1,6)$. 2. Find an equation of the plane that contains Q_1 , Q_2 , and Q_3 .

For a plane, we need a point and a normal (orthogonal) vector.

For the point, can choose Q_1 , Q_2 , or Q_3 . I'll use Q_1 .

Find a normal vect by taking $\overrightarrow{Q_1Q_2} \times \overrightarrow{Q_1Q_3}$ or any other combo. I'll use $\overrightarrow{Q_1Q_2} \times \overrightarrow{Q_1Q_3}$.

$$\overrightarrow{\mathbf{Q_1Q_2}} = \langle 2,1,-5\rangle, \qquad \overrightarrow{\mathbf{Q_1Q_3}} = \langle 3,1,3\rangle \\ \Longrightarrow \overrightarrow{\mathbf{Q_1Q_2}} \times \overrightarrow{\mathbf{Q_1Q_3}} = \langle 3+5,-(6+15),2-3\rangle = \langle 8,-21,-1\rangle$$

A point P(x, y, z) is on the plane iff $\overrightarrow{\mathbf{PQ}_1} < 8, -21, -1 >= 0$, i.e. iff $< x - 2, y, z - 3 > \cdot < 8, -21, -1 >= 0 \Rightarrow 8x - 16 - 21y - z + 3 = 0$

$$\implies 8x - 21y - z = 13.$$

Math 236-Multi (Sklensky)

In-Class Work

February 8, 2010 2 / 1

Consider the points

- $\begin{array}{ll} P_1 = (-1,3,4) & P_2 = (2,-1,3) \\ Q_1 = (2,0,3) & Q_2 = (4,1,-2) & Q_3 = (5,1,6) \end{array}$
- 1. Find an equation of the line through P_1 and P_2 .

Found:
$$x = -1 + 3t$$
, $y = 3 - 4t$, $z = 4 - t$

2. Find an equation of the plane that contains Q_1 , Q_2 , and Q_3 .

Found:
$$8x - 21y - z = 13$$
.

- 3. Find the point(s) where the line in #1 intersects the plane in #2.
- 4. Find the line of intersection of the plane in #2 with the plane 5x + y + 11z = 42.

Math 236-Multi (Sklensky)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シへの