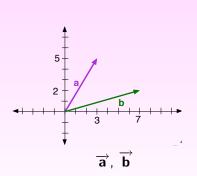
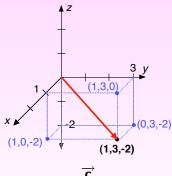
Let
$$\overrightarrow{\mathbf{a}} = <3,5>$$
, $\overrightarrow{\mathbf{b}} = <7,2>$, and $\overrightarrow{\mathbf{c}} = <1,3,-2>$.

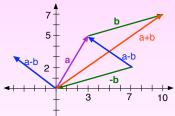
1. Draw $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ on the same set of axes. On a separate set of axes, draw $\overrightarrow{\mathbf{c}}$.





Let $\overrightarrow{\mathbf{a}} = <3,5>$, $\overrightarrow{\mathbf{b}} = <7,2>$, and $\overrightarrow{\mathbf{c}} = <1,3,-2>$.

2. Draw $\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}}$.



Let
$$\overrightarrow{\mathbf{a}} = <3,5>$$
, $\overrightarrow{\mathbf{b}} = <7,2>$, and $\overrightarrow{\mathbf{c}} = <1,3,-2>$.

3. Find $\overrightarrow{a} \cdot \overrightarrow{b}$, if possible. If it's not possible, why not?

$$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = <3,5>\cdot<7,2>=21+10=31.$$

4. Find $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}$, if possible. If it's not possible, why not?

Because $\overrightarrow{\mathbf{b}}$ sits in 2-dimensions and $\overrightarrow{\mathbf{c}}$ sits in 3, this is not possible.

Let
$$\overrightarrow{\mathbf{a}} = <3,5>$$
, $\overrightarrow{\mathbf{b}} = <7,2>$, and $\overrightarrow{\mathbf{c}} = <1,3,-2>$.

5. Is the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ acute, orthogonal, or obtuse? Do (5) without calculating the angle.

We know that

$$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = ||a|| ||b|| \cos(\theta).$$

Since the magnitudes $\|\overrightarrow{\mathbf{a}}\|$, $\|\overrightarrow{\mathbf{b}}\|$ are positive, the sign of $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ depends completely on the sign of $\cos(\theta)$... which in turn depends completely on whether the angle is acute or obtuse.

Thus since $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} > 0$, θ must be acute.

Let
$$\overrightarrow{\mathbf{a}} = <3,5>$$
, $\overrightarrow{\mathbf{b}} = <7,2>$, and $\overrightarrow{\mathbf{c}} = <1,3,-2>$.

6. Find the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$.

$$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta)$$

$$31 = \sqrt{9 + 25}\sqrt{49 + 4}\cos(\theta)$$

$$\frac{31}{\sqrt{34}\sqrt{53}} = \cos(\theta)$$

$$\theta = \arccos\left(\frac{31}{\sqrt{1802}}\right) \approx \arccos(0.73027)$$

$$\theta = .752 \text{ radians}$$

Let
$$\overrightarrow{\mathbf{a}} = <3,5>$$
, $\overrightarrow{\mathbf{b}} = <7,2>$, and $\overrightarrow{\mathbf{c}} = <1,3,-2>$.

7. Find two vectors perpendicular to $\overrightarrow{\mathbf{b}}$.

In order to be perpendicular to $\overrightarrow{\mathbf{b}}$, the dot product must be zero.

$$< x, y > \cdot < 7, 2 >= 0 \Rightarrow 7x + 2y = 0.$$

The vectors <-2,7> and <2,-7> seem like the most obvious choices.

Any other choice will turn out to be a multiple of these two, since there are only two directions perpendicular to this vector in 2-space.

Let
$$\overrightarrow{\mathbf{a}} = <3,5>$$
, $\overrightarrow{\mathbf{b}} = <7,2>$, and $\overrightarrow{\mathbf{c}} = <1,3,-2>$.

8. Find three vectors perpendicular to $\overrightarrow{\mathbf{c}}$.

$$\langle x, y, z \rangle \cdot \langle 1, 3, -2 \rangle = 0 \Rightarrow 1x + 3y - 2z = 0.$$

- ▶ If x = 1 and y = 1, then 1 + 3 2z = 0, so z = 2. Thus < 1, 1, 2 > is orthogonal to $\overrightarrow{\mathbf{c}}$
- ▶ If x = 1 and z = 1, then 1 + 3y 2 = 0, so $y = \frac{1}{3}$. Thus $<1, \frac{1}{3}, 1>$ is orthogonal to $\overrightarrow{\mathbf{c}}$ as well.
- ▶ If y = 1 and z = 1, then x + 3 2 = 0, so x = -1. Thus < -1, 1, 1 > is a third vector orthogonal to $\overrightarrow{\mathbf{c}}$.

Notice: none of these three are multiples of any of the others. In space, there are an infinite number of directions perpendicular to any given vector.

7 / 7