
1. Find and classify (as best you can) all critical points of the function
h(x , y) = x2 − 4x − 23− y3 − 9y2 − 27y + xy

hx = 2x − 4 + y hy = −3y2 − 18y − 27 + x

hx = 0⇒ x = 2− y/2 hy = 0⇒ −3y2 − 18y − 27 + (2− y/2) = 0

⇒ −3y2 − 37y/2− 25 = 0

⇒ 6y2 + 37y + 50 = 0

⇒ y =
−37±

√
(37)2 − 4(6)(50)

2(6)

⇒ y =
−37±

√
1369− 1200

12

⇒ y =
−37± 13

12

⇒ y = −2 or y = −25

6
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1. (continued) Find and classify (as best you can) all critical points of the
function h(x , y) = x2 − 4x − 23− y3 − 9y2 − 27y + xy

We found that hx = 2x − 4 + y and hy = −3y2 − 18y − 27 + x .

When we solved hx = 0 and hy = 0, we found

y = −2 or y = −25

6
.

Using hx = 0⇒ x = 2− y/2, the two critical points are (3,−2) and
( 49

12 ,−
25
6 ).
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1. (continued) Find and classify (as best you can) all critical points of the
function h(x , y) = x2 − 4x − 23− y3 − 9y2 − 27y + xy

What can we figure out from the 2nd partials?

hxx = 2 hyy = −6y − 18.

At (3,−2), hxx(3,−2) = 2 > 0⇒ h is concave up parallel to x ;
hyy (3,−2) = 0 is uninformative.

At (49/12,−25/6),hxx(49/12,−25/6) = 2 > 0⇒ h is concave up parallel
to x ; hyy (49/12,−25/6) = 7 > 0⇒ h is concave up parallel to y .

Thus we know that neither point is a local maximum (since in at least one
direction, the surface is concave up in each case). They each could be
minima or saddle points. Look at contour plot to decide.
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2.

Use the contour plot at right to

estimate
∂f

∂x
and

∂f

∂y
at the ori-

gin.

This is a homework problem.

The key idea here is that ∂f
∂x (0, 0) ≈ ∆f

∆x

∣∣∣∣
(0,0)

, and that we know the value

of f along the contour plots.
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3. The wave equation is the partial differential equation c2 ∂
2f

∂x2
=
∂2f

∂t2
.

Show that the functions fn(x , t) = sin(nπx) cos(nπct) satisfy the wave
equation, for any positive integer n and any constant c .

This is also a homework problem.

In this problem, the key idea is finding
∂2f

∂x2
and

∂2f

∂t2
, and then showing

that multiplying
∂2f

∂x2
by c2 will produce

∂2f

∂t2
.

Math 236-Multi (Sklensky) Solutions-In-Class Work March 22, 2010 5 / 5


